Category: Programming

How To Create Dummy Variables in GAUSS

Dummy variables are a common econometric tool, whether working with time series, cross-sectional, or panel data. Unfortunately, raw datasets rarely come formatted with dummy variables that are regression ready. In today’s blog, we explore several options for creating dummy variables from categorical data in GAUSS, including:
  • Creating dummy variables from a file using formula strings.
  • Creating dummy variables from an existing vector of categorical data.
  • Creating dummy variables from an existing vector of continuous variables.

Advanced Search and Replace in GAUSS

You’re probably familiar with the basic find-and-replace. However, large projects with many files across several directories, require a more powerful search tool. The GAUSS Source Browser is the powerful search-and-replace tool you need. In this blog, you’ll learn more about using the advanced search-and-replace tools in GAUSS to effectively navigate and edit in projects with multiple files and directories.

How to mix, match and style different graph types

Often times we need to mix multiple graph types in order to create a plot which most effectively tells the story of our data. In this post, we will create a plot of the Phillips Curve in the United States over two separate time periods. We will show how to add scatter points and lines as well as data series’ of different lengths to a single plot. However, our main focus will be showing you how to control the styling of all aspects of the plot in these cases.

Using GAUSS Packages [Complete Guide]

GAUSS packages provide access to powerful tools for performing data analysis. This guide covers all you need to know to get the most from GAUSS packages including:
  • What is a GAUSS package
  • Where to find GAUSS packages
  • What is included in GAUSS packages
  • How to use GAUSS packages

Fundamental Bayesian Samplers

The posterior probability distribution is the heart of Bayesian statistics and a fundamental tool for Bayesian parameter estimation. Naturally, how to infer and build these distributions is a widely examined topic, the scope of which cannot fit in one blog. In this blog, we examine bayesian sampling using three basic, but fundamental techniques, importance sampling, Metropolis-Hastings sampling, and Gibbs sampling.

Have a Specific Question?

Get a real answer from a real person

Need Support?

Get help from our friendly experts.

Try GAUSS for 30 days for FREE

See what GAUSS can do for your data

© Aptech Systems, Inc. All rights reserved.

Privacy Policy