Recent Posts

GAUSS 22

GAUSS 22 brings many substantial new features that will save you hours of time and frustration with everyday tasks including:
  • Data exploration
  • Data cleaning and management
  • Graphics
See some of the ways that GAUSS 22 will help you make the most of your limited research time below!

The Quantile Autoregressive-Distributed Lag Parameter Estimation and Interpretation in GAUSS

The QARDL model has grown increasingly popular in time series analysis. It is a convenient model for addressing autocorrelation, disentangling long-term and short-term relationships, and addressing asymmetric relationships. In today’s blog, we look at the basics of the QARDL model including:
  1. The intuition behind the QARDL model.
  2. How to estimate the QARDL model in GAUSS.
  3. How to interpret the QARDL results.

The Structural VAR Model at Work: Analyzing Monetary Policy

In today’s blog, we put the building blocks of the structural vector autoregressive (SVAR) model to work in a practical application. We’ll use one of the most common applications of SVAR models, monetary policy analysis, to see the SVAR in action. After this blog, you should have a stronger understanding of:
  • How to use Granger causality testing to inform model selection.
  • How to implement short-run identification restrictions.
  • How to conduct and interpret structural VAR analysis.
Tagged in

Introduction to Markov-Switching Models

Markov-switching models offer a powerful tool for capturing the real-world behavior of time series data. Today’s blog provides an introduction to Markov-switching models including:
  • What a regime switching model is and how it differs from a structural break model.
  • When we should use the regime switching model.
  • What a Markov-switching model is.
  • What tools we use to estimate Markov-switching models.
Tagged in ,

Understanding Errors: G0058 Index out-of-Range

Today we will help you to understand and resolve Error G0058 Index Out-of-Range We will :
  1. Explain the cause of the index out-of-range error in GAUSS.
  2. Explain why performing index assignments past the end of your data can lead to bad outcomes.
  3. Show how to use some functions and operators that can assist with diagnosing and resolving this error.
  4. Work through an example to resolve an indexing problem.
Tagged in ,

Introduction to Handling Missing Values

Handling missing values is an important step in data cleaning that can impact model validity and reliability. Despite this, it can be difficult to find examples and resources about how to deal with missing values. This blog helps to fill that void and covers:
  • Types of missing values.
  • Dealing with missing values.
  • Missing values in practice.

Understanding and Solving the Structural Vector Autoregressive Identification Problem

The structural vector autoregressive model is a crucial time series model used to understand and predict economic impacts and outcomes. In this blog, we look closely at the identification problem posed by structural vector autoregressive models and its solution. In particular, we cover:
  • What is the structural VAR model and what is the reduced form VAR?
  • What is the relationship between structural VAR and reduced form VAR models?
  • What is the structural VAR identification problem?
  • What are common solutions to the structural VAR identification problem?
Tagged in

Understanding Errors: G0064 Operand Missing

Today we will help you to understand and resolve Error G0064: Operand Missing. We will answer the questions:
  1. What is an operand?
  2. How do common mathematical and non-mathematical operators interact with operands?
  3. What are common causes of operand missing errors?
Tagged in ,

Introduction to Granger Causality

Multivariate time series analysis turns to VAR models not only for understanding the relationships between variables but also for forecasting. In today’s blog, we look at how to improve VAR model selection and achieve better forecasts using Granger-causality. We explore the questions:
  1. What is Granger-causality?
  2. When to use Granger causality?
  3. How to use Granger causality?

Have a Specific Question?

Get a real answer from a real person

Need Support?

Get help from our friendly experts.

Try GAUSS for 14 days for FREE

See what GAUSS can do for your data

© Aptech Systems, Inc. All rights reserved.

Privacy Policy