Recent Posts

Introduction to the Fundamentals of Time Series Data and Analysis

Introduction Time series data is data that is collected at different points in time. This is opposed to cross-sectional data which observes individuals, companies, etc. at a single point in time. Because data points in time series are collected at adjacent time periods there is potential for correlation between observations. This is one of the [...]

New release of tspdlib 1.0

The preliminary econometric package for Time Series and Panel Data Methods has been updated and functionality has been expanded in this first official release of tspdlib 1.0. The tspdlib 1.0 package includes functions for time series unit root tests in the presence of structural breaks, time series and panel data unit root tests in the [...]

Using GAUSS Packages [Complete Guide]

Introduction GAUSS packages provide access to powerful tools for performing data analysis. This guide covers all you need to know to get the most from GAUSS packages including: What is a GAUSS package Where to find GAUSS packages What is included in GAUSS packages How to use GAUSS packages What is a GAUSS package? A [...]

Update Discrete Choice Application Module

Introduction The latest Discrete Choice Analysis Tools 2.1.0 is now available for release. If you own Discrete Choice 2.0 the update is available for free. New features include tools for computing: Average marginal effects (AME) Marginal effects at the mean (MEM). Change Log Added ability to compute average marginal effects. Added error checking for variable [...]

Fundamental Bayesian Samplers

Introduction The posterior probability distribution is the heart of Bayesian statistics and a fundamental tool for Bayesian parameter estimation. Naturally, how to infer and build these distributions is a widely examined topic, the scope of which cannot fit in one blog. We can, however, start to build a better understanding of sampling by examining three [...]

The Current Working Directory: What you need to know

Introduction Whether you are new to GAUSS, or have been around for a while, today's blog will have something for you. We'll answer the questions: What is the current working directory in GAUSS? How can I find my working directory? How can I change my working directory? Then we'll show you how some common GAUSS [...]

GAUSS Basics 6: Logical and relational operators

Learn how to use the logical and relational operators in GAUSS. These operators include: and, not, or, xor, less-than, less-than or equal, greater-than, greater-than or equal, equal You will also see these operators used to select specific rows of a matrix with logical indexing. Next: GAUSS Basics 7: Conditional statements Previous: GAUSS Basics 5: Element-by-element [...]
Tagged in , , , ,

Marginal Effects of Linear Models with Data Transformations

Introduction We use regression analysis to understand the relationships, patterns, and causalities in data. Often we are interested in understanding the impacts that changes in the dependent variables have on our outcome of interest. Marginal effects measure the impact that an instantaneous unit change in one variable has on the outcome variable while all other [...]

Have a Specific Question?

Get a real answer from a real person

Need Support?

Get help from our friendly experts.

Try GAUSS for 30 days for FREE

See what GAUSS can do for your data

© Aptech Systems, Inc. All rights reserved.

Privacy Policy