Category: Econometrics

Introduction to the Fundamentals of Time Series Data and Analysis

The statistical characteristics of time series data often violate the assumptions of conventional statistical methods. Because of this, analyzing time series data requires a unique set of tools and methods, collectively known as time series analysis. This article covers the fundamental concepts of time series analysis and should give you a foundation for working with time series data. Everything is covered from time series plotting to time series modeling.

New release of tspdlib 1.0

The preliminary econometric package for Time Series and Panel Data Methods has been updated and functionality has been expanded in this first official release of tspdblib 1.0. The tspdlib 1.0 package includes functions for time series unit root tests in the presence of structural breaks, time series and panel data unit root tests in the presence of structural breaks, and panel data causality tests. It is available for direct installation using the GAUSS Package Manager.

Fundamental Bayesian Samplers

The posterior probability distribution is the heart of Bayesian statistics and a fundamental tool for Bayesian parameter estimation. Naturally, how to infer and build these distributions is a widely examined topic, the scope of which cannot fit in one blog. In this blog, we examine bayesian sampling using three basic, but fundamental techniques, importance sampling, Metropolis-Hastings sampling, and Gibbs sampling.

Marginal Effects of Linear Models with Data Transformations

We use regression analysis to understand the relationships, patterns, and causalities in data. Often we are interested in understanding the impacts that changes in the dependent variables have on our outcome of interest. However, not all models provide such straightforward interpretations. Coefficients in more complex models may not always provide direct insights into the relationships we are interested in. In this blog, we look more closely at the interpretation of marginal effects in three types of models:
  • Purely linear models.
  • Models with transformations in independent variables.
  • Models with transformations of dependent variables.

Introduction to Difference-in-Differences Estimation

When policy changes or treatments are imposed on people, it is common and reasonable to ask how those people have been impacted. This is a more difficult question than it seems at first glance. In today’s blog, we examine difference-in-differences (DD) estimation, a common tool for considering the impact of treatments on individuals.

Have a Specific Question?

Get a real answer from a real person

Need Support?

Get help from our friendly experts.

Try GAUSS for 14 days for FREE

See what GAUSS can do for your data

© Aptech Systems, Inc. All rights reserved.

Privacy Policy