Year: 2018

Make your time series computations up to 20 times faster

The key to getting the most performance from a matrix language is to vectorize your code as much as possible. Vectorized code performs operations on large sections of matrices and vectors in a single operation, rather than looping over the elements one-by-one. In this blog, we learn how to use the GAUSS recserar function to vectorize code and simulate a time series AR(1) model.
Tagged in , , , ,

Repeating simulations from older versions of GAUSS

Starting in GAUSS version 12, a new suite of high quality and high-performance random number generators was introduced. While new projects should always use one of the modern RNG’s, it is sometimes necessary to exactly reproduce some work from the past. GAUSS has retained a set of older LCG’s, which will allow you to reproduce the random numbers from older GAUSS versions for many distributions.

The Effects of Structural Breaks on GMM models

[markdown] While structural breaks are a widely examined topic in pure time series, their impacts on panel data models have garnished less attention. However, in their forthcoming paper [Chowdhury and Russell (2018)]( demonstrate that [structural breaks]( can cause bias in the instrumental variable panel estimation framework. This work highlights that structural breaks shouldn’t be limited to pure time series models and warrant equal attention in panel data models. [/markdown]
Tagged in

Have a Specific Question?

Get a real answer from a real person

Need Support?

Get help from our friendly experts.

Try GAUSS for 14 days for FREE

See what GAUSS can do for your data

© Aptech Systems, Inc. All rights reserved.

Privacy Policy