Estimating the TAR Model
This example follows the empirical example found in Hansen (1996) and estimates a threshold model for quarterly GNP growth rates. The data file
gnp.dat contains seasonable adjusted GNP for 1947 to 1990 and is transformed to annualized quarterly growth rates:
| |
| library tsmt; |
| |
| |
| |
| |
| |
| ln_gnp = loadd(__FILE_DIR $+ "gnp_4790.csv", "ln(real_gnp)"); |
| |
| y = (ln_gnp[2:rows(ln_gnp)] - ln_gnp[1:rows(ln_gnp)-1])*400; |
Next all parameter values for the TAR estimation must be set
| |
| struct TARControl TAR0; |
| |
| |
| TAR0 = TARControlCreate(); |
| |
| |
| TAR0.p = 5; |
| |
| |
| TAR0.omit = { 3, 4 }; |
| |
| |
| TAR0.lowerQuantile = .15; |
| TAR0.upperQuantile = .85; |
| |
| |
| TAR0.rep = 5000; |
| |
| |
| TAR0.printOutput = 1; |
| TAR0.graph = 1; |
| |
| |
| TAR0.dstart = 1947; |
| TAR0.freq = 4; |
Finally, call the
GAUSS procedure
TARTest.
| |
| struct TAROut TARoutput; |
| |
| |
| TARoutput = TARTest(y,TAR0); |
This produces three graphs:

Plot for first lag

Plot for second lag

Plot for fifth lag
and prints the following output to the command/program window:
| OLS Estimation of Null Linear Model |
| |
| Variable Estimate S.E. |
| C 1.99225488 0.59341810 |
| Y(t-1) 0.31753696 0.08929921 |
| Y(t-2) 0.13197878 0.08801236 |
| Y(t-5) -0.08696297 0.06763670 |
| |
| Residual Variance 15.960496 |
| |
| Searching over Threshold Variable: 1 |
| Searching over Threshold Variable: 2 |
| Searching over Threshold Variable: 3 |
| Global Estimates |
| Threshold Variable Lag 2.0000000 |
| Threshold Estimate 0.012572093 |
| Error Variance 14.548361 |
| |
| Regime 1: Y(t-2) < 0.012572 |
| |
| Variable Estimate S.E. |
| C -3.21255539 2.12039565 |
| Y(t-1) 0.51278104 0.24699822 |
| Y(t-2) -0.92692272 0.30831951 |
| Y(t-5) 0.38445656 0.24603002 |
| |
| Regime 1 Error Variance 23.533054 |
| |
| Regime 2: Y(t-2) > 0.012572 |
| |
| Variable Estimate S.E. |
| C 2.14186153 0.77389336 |
| Y(t-1) 0.30085440 0.10132777 |
| Y(t-2) 0.18484356 0.10131018 |
| Y(t-5) -0.15813482 0.07335517 |
| |
| Regime 2 Error Variance 12.143010 |
| |
| Test Statistics and Estimated Asymptotic P-Values |
| |
| Robust LM Statistics |
| SupLM 14.06847762 0.16940000 |
| ExpLM 3.96481133 0.16620000 |
| AveLM 4.68986250 0.27380000 |
| |
| Standard LM Statistics |
| SupLMs 18.24477743 0.94380000 |
| ExpLMs 4.77627149 0.94320000 |
| AveLMs 4.57209118 0.87960000 |