FANPAC MT 3.0 Example
GARCH model with Student’s t distribution
Estimate Parameters of a TGARCH model Let Define where Let Financial time series is well-known to be fat-tailed. For this reason we shall use the Student’s t distribution. The log-likelihood is where . Specific Example The command file for a typical problem using keyword commands looks like this:/* This example studies 20 years ** of monthly weighted returns ** of the Wilshire 5000 index. */ library fanpacmt; session example 'wilshire example'; setVarNames date cwprice cwdiv cwret ewprice ewdiv ewret; setDataSet wilshire.asc; setSeries cwret; estimate run1 tgarch(3,2); showResults;And this is the output:
============================================================== Session: example -------------------------------------------------------------- wilshire example -------------------------------------------------------------- FANPAC Version 3.0.2 Data Set: wilshire 4/06/2012 12:32:42 ============================================================== ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Run: run1 -------------------------------------------------------------- -------------------------------------------------------------- return code = 0 normal convergence Model: TGARCH Number of Observations : 324 Observations in likelihood : 321 Degrees of Freedom : 313 log-likelihood : -987.278 AIC : 1990.56 BIC : 2020.73 LRS : 1974.56 roots _______________ 1.0666476 -0.20529984 + 1.0521398i -0.20529984 - 1.0521398i Abs(roots) _______________ 1.0666476 1.0719824 1.0719824 Maximum likelihood covariance matrix of parameters 0.95 confidence limits computed from standard errors Series: ewret Variance Equation Variance Equation Constant(s) Estimate 4.4472 standard error 1.8130 lower confidence limit 0.88008 upper confidence limit 8.0143 Garch Parameter(s) Estimate 0.49974 -0.60891 0.81584 standard error 0.038067 0.035513 0.041073 lower confidence limit 0.42484 -0.67878 0.73502 upper confidence limit 0.57464 -0.53903 0.89665 Arch Parameter(s) Estimate 0.080473 0.073678 standard error 0.030695 0.028714 lower confidence limit 0.020078 0.017181 upper confidence limit 0.14087 0.13018 Mean Equations Constant(s) Estimate 1.7884 standard error 0.2850 lower confidence limit 1.2276 upper confidence limit 2.3492 Miscellaneous Parameters Nu Estimate 6.1808 standard error 1.8453 lower confidence limit 2.5501 upper confidence limit 9.8115