
GAUSSTM

Programming Language

Structures and SqpSolvemt

Version 1.0.0
November 12, 2003

Aptech Systems, Inc.
Maple Valley, WA

The information in this workbook is subject to change without notice and does not represent a

commitment on the part of Aptech Systems. The manual and the accompanying software are

provided under the terms of a license agreement or non-disclosure agreement. The software

may be used and copied only according to the terms of the agreement. No part of this manual

may be reproduced, transmitted, transcribed, stored in any retrieval system, or translated into

any language by any means without the prior written permission of:

Aptech Systems, Inc.
23804 SE Kent-Kangley Road

Maple Valley, WA 98038
Copyright c©2003 by Aptech Systems, Inc.

All Rights Reserved.

November 12, 2003

GAUSS is a trademark of Aptech Systems, Inc.

2

Chapter 1

Basic Structures

1.0.1 Structure Definition

The syntax for a structure definition is as follows

struct A { /* list of members */ };

The list of members can include scalars, arrays, matrices, strings, string arrays, as well
as other structures. As a type, scalars are unique to structures and don’t otherwise
exist.

For example, the following defines a structure containing the possible contents,

struct generic_example {

scalar x;

matrix y;

string s1;

string array s2

struct other_example t;

};

A useful convention is to put the structure definition into a file with an .sdf extension.
Then for any command file or source code file that requires this definition put

#include filename.sdf

3

1. BASIC STRUCTURES

For example

#include example.sdf

These statements create structure definitions that persist until the workspace is cleared.
They do not create structures, only structure type definitions. The next section
describes how to create an instance of a structure.

1.0.2 Declaring an Instance

To use a structure it is necessary to declare an instance. The syntax for this is

struct structure_type structure_name;

For example

#include example.sdf

struct generic_example p0;

1.0.3 Initializing an Instance

Members of structures are referenced using a “dot” syntax:

p0.x = rndn(20,3);

The same syntax applies when referred to on the right-hand side:

mn = meanc(p0.x);

Initialization of Global Structures

Global structures are initialized at compile time. Each member of the structure
initialized according to the following schedule:

scalar 0, a scalar zero

matrix {}, a empty matrix with zero rows and zero columns

array 0, a one dimensional array set to zero

string “”, a null string

string array “”, a 1× 1 string array set to null

4

1. BASIC STRUCTURES

If a global already exists in memory, it will not be reinitialized. It may be the case in
your program that when it is rerun, the global variables may need to be reset to default
values. That is, your program may depend on certain members of a structure being set
to default values which are set to some other value later in the program. When you
rerun this program you will want to reinitialize the global structure. To do this, make
an assignment to at least one of the members. This can be made convenient by writing
a procedure that declares a structure and initializes one of its members to a default
value and then returns it. for example,

/* ds.src */

#include ds.sdf

proc dsCreate;

struct DS d0;

d0.dataMatrix = 0;

retp(d0);

endp;

Calling this function after declaring an instance of the structure will ensure
initialization to default values each time your program is run.

struct DS d0;

d0 = dsCreate;

Initializing Local Structures

Local structures, which are structures defined inside procedures, are initialized at the
first assignment. The procedure may have been written in such a way that a subset of
structures are used an any one call, and in that case time is saved by not initializing
the unused structures. They will be initialized to default values only when the first
assignment is made to one of its members.

1.0.4 Arrays of Structures

To create a matrix of instances use the reshape command:

#include ds.sdf

struct DS p0;

p0 = reshape(dsCreate,5,1);

This creates a 5 by 1 vector of instances of option, all of the with members initialized
to default values.

When the instance members have been set to some other values, reshape will produce
multiple copies of that instance set to those values.

5

1. BASIC STRUCTURES

Matrices or vectors of instances can also be created by concatenation.

#include trade.sdf

struct option p0,p1,p2;

p0 = optionCreate;

p1 = optionCreate;

p2 = p1 | p0;

1.0.5 Saving an Instance to the Disk

Instances and vectors or matrices of instances of structures can be saved in a file on the
disk, and later loaded from a file on the disk. The syntax for saving an instance to the
disk is

ret = savestruct(instance,filename);

The file on the disk will have an .fsr extension.

For example,

#include ds.sdf

struct DS p0;

p0 = reshape(dsCreate,2,1);

retc = saveStruct(p2,"p2");

This saves the vector of instances in a file called p2.fsr. retc will be zero if the save
was successful and otherwise nonzero.

1.0.6 Loading an Instance from the Disk

The syntax for loading a file containing an instance or matrix of instances is

{ instance, retc } = loadstruct(file_name,structure_name);

For example,

#include trade.sdf;

struct DS p3;

{ p3, retc } = loadstruct("p2","ds");

6

1. BASIC STRUCTURES

1.1 Passing Structures to Procedures

Structures or members of structures can be passed to procedures. When a structure is
passed as an argument to a procedure, it is passed by value. The structure becomes a
local copy of the structure that was passed. The data in the structure is not duplicated
unless the local copy of the structure has a new value assigned to one of its members.

Structure arguments must be declared in the procedure definition.

struct rectangle {

matrix ulx;

matrix uly;

matrix lrx;

matrix lry;

};

proc area(struct rectangle rect);

retp((rect.lrx - rect.ulx) .* (rect.uly - rect.lry));

endp;

Local structures are defined using a struct statement inside the procedure definition.

proc center(struct rectangle rect);

struct rectangle cent;

cent.lrx = (rect.lrx - rect.ulx) / 2;

cent.ulx = -cent.lrx;

cent.uly = (rect.uly - rect.lry) / 2;

cent.lry = -cent.uly;

retp(cent);

endp;

7

1. BASIC STRUCTURES

8

Chapter 2

Special Structures

There are three common types of structures that will be found in the GAUSS
Run-Time Library and applications.

The DS and PV structures are defined in the GAUSS Run-Time Library. There
definitions are found in ds.sdf and pv.sdf respectively in the src source code
subdirectory.

Before structures many procedures in the Run-Time Library and all applications had
global variables serving a variety of purposes such as setting and altering defaults.
Currently these variables are being entered as members of “control” structures.

2.1 The DS Structure

The DS structure, or “data” structure, is a very simple structure. It contains a member
for each GAUSS data type. The following is found in ds.sdf:

struct DS {

scalar type;

matrix dataMatrix;

array dataArray;

string dname;

string array vnames;

};

This structure was designed for use by the various optimization functions in GAUSS, in
particular, sqpSolvemt, as well as a set of gradient procedures, gradmt, hessmt, et al.

9

2. SPECIAL STRUCTURES

These procedures all require that the user provide a procedure computing a function
(to be optimized or take the derivative of, etc.) which takes the DS structure as an
argument. The Run-Time Library procedures such as sqpSolvemt take the DS
structure as an argument and pass it on to the user-provided procedure without
modification. Thus, the user can put into that structure whatever they might need as
data in their procedure.

To initialize an instance of a DS structure, the procedure dsCreate is defined in ds.src.

#include ds.sdf

struct DS d0;

d0 = dsCreate;

2.2 The PV Structure

The PV structure, or “parameter vector” structure is used by various optimization,
modelling, and gradient procedures, in particular, sqpSolvemt, for handling the
parameter vector. The GAUSS Run-Time Library contains special functions that work
with this structure. They are prefixed by “pv” and defined in pv.src. These functions
store matrices and arrays with parameters in the structure, and retrieve various kinds
of information about the parameters and parameter vector from it.

“Packing” into a PV Structure

The various procedures in the Run-Time Library and applications for optimization,
modelling, derivatives, etc., all require a parameter vector. Parameters in complex
models, however, often come in matrices of various types, and it has been the
responsibility of the programmer to generate the parameter vector from the matrices
and vice versa. The PV procedures make this problem much more convenient to solve.

The typical situation involves two parts, first, “packing” the parameters into the PV
structure, which is then passed to the Run-Time Library procedure or application, and
second “unpacking” the PV structure in the user-provided procedure for use in
computing the objective function. For example, to pack parameters into PV structure,

#include sqpsolvemt.sdf

/* starting values */

b0 = 1; /* constant in mean equation */

garch = { .1, .1 }; /* garch parameters */

arch = { .1, .1 }; /* arch parameters */

omega = .1 /* constant in variance equation */

10

2. SPECIAL STRUCTURES

struct PV p0;

p0 = pvPack(pvCreate,b0,"b0");

p0 = pvPack(p0,garch,"garch");

p0 = pvPack(p0,arch,"arch");

p0 = pvPack(p0,omega,"omega");

/* data */

z = loadd("tseries");

struct DS d0;

d0.dataMatrix = z;

Next, in the user-provided procedure for computing the objective function, in this case
minus the log-likelihood, the parameter vector is unpacked

proc ll(struct PV p0, struct DS d0);

local b0,garch,arch,omega,p,q,h,u,vc,w;

b0 = pvUnpack(p0,"b0");

garch = pvUnpack(p0,"garch");

arch = pvUnpack(p0,"arch");

omega = pvUnpack(p0,"omega");

p = rows(garch);

q = rows(arch);

u = d0.dataMatrix - b0;

vc = moment(u,0)/rows(u);

w = omega + (zeros(q,q) | shiftr((u.*ones(1,q))’,seqa(q-1,-1,q))) * arch;

h = recserar(w,vc*ones(p,1),garch);

logl = -0.5 * ((u.*u)./h + ln(2*pi) + ln(h));

retp(logl);

endp;

11

2. SPECIAL STRUCTURES

Masked Matrices

The pvUnpack function unpacks parameters into matrices or arrays for use in
computations. The first argument is a PV structure containing the parameter vector.
Sometimes the matrix or vector is partly parameters to be estimated (that is, a
parameter to be entered in the parameter vector) and partly fixed parameters. To
distinguish between estimated and fixed parameters, and additional argument is used in
the packing function called a “mask” which is strictly conformable to the input matrix
and the elements of which are set to 1 for an estimated parameter and 0 for a fixed
parameter. For example,

p0 = pvPackm(p0,.1*eye(3),"theta",eye(3));

Here just the diagonal of a 3× 3 matrix is added to the parameter vector.

When this matrix is unpacked the entire matrix is returned with current values of the
parameters on the diagonal.

print pvUnpack(p0,"theta");

0.1000 0.0000 0.0000

0.0000 0.1000 0.0000

0.0000 0.0000 0.1000

Symmetric Matrices

Symmetric matrices are a special case because even if the entire matrix is to be
estimated only the nonredundant portion is to be put into the parameter vector. Thus
for them there are special procedures. For example,

vc = { 1 .6 .4, .6 1 .2, .4 .2 1 };

p0 = pvPacks(p0,vc,"vc");

There is also a procedure for masking in case only a subset of the nonredundant
elements are to be included in the parameter vector:

vc = { 1 .6 .4, .6 1 .2, .4 .2 1 };

mask = { 1 1 0, 1 1 0, 0 0 1 };

p0 = pvPacksm(p0,vc,"vc",mask);

Fast Unpacking

When unpacking matrices using a matrix name, pvUnpack has to make a search
through a list of names which is relatively time-consuming. This can be alleviated by

12

2. SPECIAL STRUCTURES

using an index rather than a name in unpacking. To do this, though, requires using a
special pack procedure that establishes the index:

p0 = pvPacki(p0,b0,"b0",1);

p0 = pvPacki(p0,garch,"garch",2);

p0 = pvPacki(p0,arch,"arch",3);

p0 = pvPacki(p0,omega,"omega",4);

Now they may be unpacked using the index number

b0 = pvUnpack(p0,1);

garch = pvUnpack(p0,2);

arch = pvUnpack(p0,3);

omega = pvUnpack(p0,4);

When packed with an index number they may be unpacked either by index or by name,
but unpacking by index is faster.

2.2.1 Miscellaneous PV Procedures

pvList

This procedure generates a list of the matrices or arrays packed into the structure.

p0 = pvPack(p0,b0,"b0");

p0 = pvPack(p0,garch,"garch");

p0 = pvPack(p0,arch,"arch");

p0 = pvPack(p0,omega,"omega");

print pvList(p0);

b0

garch

arch

omega

pvLength

This procedure returns the length of the parameter vector.

print pvLength(p0);

6.0000

13

2. SPECIAL STRUCTURES

pvGetParNames

This procedure generates a list of parameter names:

print pvGetParNames(p0);

b0[1,1]

garch[1,1]

garch[2,1]

arch[1,1]

arch[2,1]

omega[1,1]

pvGetParVector

This procedure returns the parameter vector itself.

print pvGetParVector(p0);

1.0000

0.1000

0.1000

0.1000

0.1000

1.0000

pvPutParVector

This procedure replaces the parameter vector with the one in the argument:

newp = { 1.5, .2, .2, .3, .3, .8 };

p0 = pvPutParVector(newp);

print pvGetParVector(p0);

1.5000

0.2000

0.2000

0.3000

0.3000

0.8000

14

2. SPECIAL STRUCTURES

pvGetIndex

This procedure returns the indices in the parameter vector of the parameters in a
matrix. These indices are useful when setting linear constraints or bounds in
sqpSolvemt. Bounds for example, are set by specifying a K × 2 matrix where K is the
length of the parameter vector, and the first column are the lower bounds and the
second the upper bounds. To set the bounds for a particular parameter then requires
knowing where that parameter is in the parameter vector. This information can be
found using pvGetIndex. For example,

/*

** get indices of lambda parameters

** in parameter vector

*/

lind = pvGetIndex(par0,"lambda");

/*

** set bounds constraint matrix to unconstrained default

*/

c0.bounds = ones(pvLength(par0),1).*(-1e250~1e250);

/*

** set bounds for lambda parameters to be positive

c0.bounds[lind,1] = zeros(rows(lind),1);

2.3 Control Structures

Another important class of structures is the “control” structure. Applications
developed before structures were introduced into Gauss typically handled some
program specifications by the use of global variables which had some disadvantages, in
particular preventing the nesting of calls to procedures.

Currently, the purposes served by global variables are now served by the use of a
control structure. For example for sqpSolvemt,

struct sqpSolvemtControl {

matrix A;

matrix B;

matrix C;

matrix D;

15

2. SPECIAL STRUCTURES

scalar eqProc;

scalar ineqProc;

matrix bounds;

scalar gradProc;

scalar hessProc;

scalar maxIters;

scalar dirTol;

scalar CovType;

scalar feasibleTest;

scalar maxTries;

scalar randRadius;

scalar trustRadius;

scalar seed;

scalar output;

scalar printIters;

matrix weights;

};

The members of this structure determine optional behaviors of sqpSolvemt:

16

Chapter 3

sqpSolvemt

sqpSolvemt is a procedure in the GAUSS Run-Time Library that solves the general
nonlinear programming problem using a Sequential Quadratic Programming descent
method, that is, it solves

minf(θ)

subject to
Aθ = B linear equality
Cθ ≥ D linear inequality
H(θ) = 0 nonlinear equality
G(θ) ≥ 0 nonlinear inequality
θlb ≤ θ ≤ θub bounds

The linear and bounds constraints are redundant with respect to the nonlinear
constraints, but are treated separately for computational convenience.

The call to sqpSolvemt has four input arguments and one output argument:

out = SQPsolveMT(&fct,P,D,C);

3.0.1 Input Arguments

The first input argument is a pointer to the objective function to be minimized. The
procedure computing this objective function has two arguments, a PV structure
containing the start values, and a DS structure containing data, if any. For example,

proc fct(struct PV p0, struct DS d0);

17

3. SQPSOLVEMT

local y, x, b0, b, e, s;

y = d0[1].dataMatrix;

x = d0[2].dataMatrix;

b0 = pvUnpack(p0,"constant");

b = pvUnpack(p0,"coefficients");

e = y - b0 - x * b;

s = sqrt(e’e/rows(e));

retp(-pdfn(e/s);

endp;

Note that this procedure returns a vector rather than a scalar. When the objective
function is a properly defined log-likelihood, returning a vector of minus
log-probabilities permits the calculation of a QML covariance matrix of the parameters.

The remaining input arguments are structures,

P a PV structure containing starting values of the parameters,

D a DS structure containing data, if any

C an sqpSolvemtControl structure

The DS structure is optional. sqpSolvemt passes this argument on to the
user-provided procedure that &fct is pointing to without modification. If there is no
data, a default structure can be passed to it.

sqpSolvemt Control Structure

A default sqpSolvemtControl structure can be passed in the fourth argument for an
unconstrained problem. The members of this structure are as follows

A M ×K matrix, linear equality constraint coefficients: Aθ = B where p is
a vector of the parameters.

B M × 1 vector, linear equality constraint constants: Aθ = B where p is a
vector of the parameters.

C M ×K matrix, linear inequality constraint coefficients: Cθ >= D where
p is a vector of the parameters.

D M × 1 vector, linear inequality constraint constants: Cθ >= D where p is
a vector of the parameters.

eqProc scalar, pointer to a procedure that computes the nonlinear equality
constraints. When such a procedure has been provided, it has two input

18

3. SQPSOLVEMT

arguments, instances of PV and DS structures, and one output argument,
a vector of computed inequality constraints.

Default = {.}, i.e., no inequality procedure.

IneqProc scalar, pointer to a procedure that computes the nonlinear inequality
constraints. When such a procedure has been provided, it has two input
arguments, instances of PV and DS structures, and one output argument,
a vector of computed inequality constraints.

Default = {.}, i.e., no inequality procedure.

Bounds 1× 2 or K × 2 matrix, bounds on parameters. If 1x2 all parameters
have same bounds.

Default = { -1e256 1e256 }.

GradProc scalar, pointer to a procedure that computes the gradient of the
function with respect to the parameters. When such a procedure has
been provided, it has two input arguments, instances of PV and DS
structures, and one output argument, the derivatives. If the function
procedure returns a scalar, the gradient procedure returns a 1×K row
vector of derivatives. If function procedure turns an N × 1 vector, the
gradient procedure returns an N ×K matrix of derivatives.

This procedure may compute a subset of the derivatives. sqpSolvemt will
compute numerical derivatives for all those elements set to missing values
in the return vector or matrix.

Default = {.}, i.e., no gradient procedure has been provided.

HessProc scalar, pointer to a procedure that computes the Hessian, i.e., the
matrix of second order partial derivatives of the function with respect to
the parameters. When such a procedure has been provided, it has two
input arguments, instances of PV and DS structures, and one output
argument, a vector of computed inequality constraints. Default = {.},
i.e., Default = {.}, i.e., no Hessian procedure has been provided.

Whether the objective function procedure returns a scalar or vector, the
Hessian procedure must return a K ×K matrix. Elements set to missing
values will be computed numerically by sqpSolvemt.

MaxIters scalar, maximum number of iterations. Default = 1e+5.

MaxTries scalar, maximum number of attemps in random search. Default =
100.

DirTol scalar, convergence tolerance for gradient of estimated coefficients.
Default = 1e-5. When this criterion has been satisifed sqpSolvemt exits
the iterations.

19

3. SQPSOLVEMT

CovType scalar, if 2, QML covariance matrix, else if 0, no covariance matrix is
computed, else ML covariance matrix is computed. For a QML
covariance matrix the objective function procedure must return an N × 1
vector of minus log-probabilities.

FeasibleTest scalar, if nonzero, parameters are tested for feasibility before
computing function in line search. If function is defined outside
inequality boundaries, then this test can be turned off. Default = 1.

randRadius scalar, If zero, no random search is attempted. If nonzero, it is the
radius of the random search. Default = .001.

seed scalar, if nonzero, seeds random number generator for random search,
otherwise time in seconds from midnight is used.

trustRadius scalar, radius of the trust region. If scalar missing, trust region
not applied. The trust sets a maximum amount of the direction at each
iteration. Default = .001.

output scalar, if nonzero, results are printed. Default = 0.

PrintIters scalar, if nonzero, prints iteration information. Default = 0.

weights vector, weights for objective function returning a vector. Default = 1.

3.0.2 Output Argument

The single output argument is an sqpSolvemtOut structure. Its definition is

struct SQPsolveMTOut {

struct PV par;

scalar fct;

struct SQPsolveMTLagrange lagr;

scalar retcode;

matrix moment;

matrix hessian;

matrix xproduct;

};

The members of this structure are

par instance of a PV structure containing the parameter estimates are placed
in the member matrix par.

fct scalar, function evaluated at final parameter estimates

20

3. SQPSOLVEMT

lagr an instance of a SQPLagrange structure containing the Lagrangeans for
the constraints. For an instance named lagr, the members are:

lagr.lineq M × 1 vector, Lagrangeans of linear equality constraints,

lagr.nlineq N × 1 vector, Lagrangeans of nonlinear equality constraints

lagr.linineq P × 1 vector, Lagrangeans of linear inequality constraints

lagr.nlinineq Q× 1 vector, Lagrangeans of nonlinear inequality
constraints

lagr.bounds K × 2 matrix, Lagrangeans of bounds

Whenever a constraint is active, its associated Lagrangean will be
nonzero. For any constraint that is inactive throughout the iterations as
well as at convergence, the corresponding Lagrangean matrix will be set
to a scalar missing value.

retcode return code:

0 normal convergence

1 forced exit

2 maximum number of iterations exceeded

3 function calculation failed

4 gradient calculation failed

5 Hessian calculation failed

6 line search failed

7 error with constraints

8 function complex

9 feasible direction couldn’t be found

3.0.3 Example

Define

Y = Λη + θ

where Λ is a K × L matrix of “loadings”, η an L × 1 vector of unobserved “latent”
variables, and θ an K × 1 vector of unobserved errors. Then

Σ = ΛΦΛ′ + Ψ

where Φ is the L× L covariance matrix of the latent variables, and Ψ is the K ×K
covariance matrix of the errors.

21

3. SQPSOLVEMT

The log-likelihood of the i-th observation is

logP (i) = −1

2
[Kln(2π) + ln|Σ|+ Y (i)ΣY (i)′]

Not all elements of Λ, Φ, and Ψ can be estimated. At least one element of each column
of Λ must be fixed to 1, and Ψ is usually a diagonal matrix.

Constraints

To ensure a well-defined log-likelihood, constraints on the parameters are required to
guarantee positive definite covariance matrices. To do this a procedure is written that
returns the eigenvalues of Σ and Φ minus a small number. sqpSolvemt then finds
parameters such that these eigenvalues are greater or equal to that small number.

3.0.4 The Command File

This command file can be found in the file sqpfact.e in the .
examples subdirectory.

#include sqpsolvemt.sdf

lambda = { 1.0 0.0,

0.5 0.0,

0.0 1.0,

0.0 0.5 };

lmask = { 0 0,

1 0,

0 0,

0 1 };

phi = { 1.0 0.3,

0.3 1.0 };

psi = { 0.6 0.0 0.0 0.0,

0.0 0.6 0.0 0.0,

0.0 0.0 0.6 0.0,

0.0 0.0 0.0 0.6 };

tmask = { 1 0 0 0,

0 1 0 0,

0 0 1 0,

22

3. SQPSOLVEMT

0 0 0 1 };

struct PV par0;

par0 = pvCreate;

par0 = pvPackm(par0,lambda,"lambda",lmask);

par0 = pvPacks(par0,phi,"phi");

par0 = pvPacksm(par0,psi,"psi",tmask);

struct SQPsolveMTControl c0;

c0 = sqpSolveMTcontrolCreate;

lind = pvGetIndex(par0,"lambda"); /* get indices of lambda parameters */

/* in parameter vector */

tind = pvGetIndex(par0,"psi"); /* get indices of psi parameters */

/* in parameter vector */

c0.bounds = ones(pvLength(par0),1).*(-1e250~1e250);

c0.bounds[lind,1] = zeros(rows(lind),1);

c0.bounds[lind,2] = 10*ones(rows(lind),1);

c0.bounds[tind,1] = .001*ones(rows(tind),1);

c0.bounds[tind,2] = 100*ones(rows(tind),1);

c0.output = 1;

c0.printIters = 1;

c0.trustRadius = 1;

c0.ineqProc = &ineq;

c0.covType = 1;

struct DS d0;

d0 = dsCreate;

d0.dataMatrix = loadd("maxfact");

output file = sqpfact.out reset;

struct SQPsolveMTOut out0;

out0 = SQPsolveMT(&lpr,par0,d0,c0);

lambdahat = pvUnpack(out0.par,"lambda");

phihat = pvUnpack(out0.par,"phi");

psihat = pvUnpack(out0.par,"psi");

23

3. SQPSOLVEMT

print "estimates";

print;

print "lambda" lambdahat;

print;

print "phi" phihat;

print;

print "psi" psihat;

struct PV stderr;

stderr = out0.par;

if not scalmiss(out0.moment);

stderr = pvPutParVector(stderr,sqrt(diag(out0.moment)));

lambdase = pvUnpack(stderr,"lambda");

phise = pvUnpack(stderr,"phi");

psise = pvUnpack(stderr,"psi");

print "standard errors";

print;

print "lambda" lambdase;

print;

print "phi" phise;

print;

print "psi" psise;

endif;

output off;

proc lpr(struct PV par1, struct DS data1);

local lambda,phi,psi,sigma,logl;

lambda = pvUnpack(par1,"lambda");

phi = pvUnpack(par1,"phi");

psi = pvUnpack(par1,"psi");

sigma = lambda*phi*lambda’ + psi;

logl = -lnpdfmvn(data1.dataMatrix,sigma);

retp(logl);

endp;

24

3. SQPSOLVEMT

proc ineq(struct PV par1, struct DS data1);

local lambda,phi,psi,sigma,e;

lambda = pvUnpack(par1,"lambda");

phi = pvUnpack(par1,"phi");

psi = pvUnpack(par1,"psi");

sigma = lambda*phi*lambda’ + psi;

e = eigh(sigma) - .001; /* eigenvalues of sigma */

e = e | eigh(phi) - .001; /* eigenvalues of phi */

retp(e);

endp;

25

