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COINT Source Files: UNIT.SRC, CREGRS.SRC,
BASE.SRC, KERNELS.SRC

Consider the linear regression model:

yt = β′xt + εt (1)

where
xt = xt−1 + vt (2)

and εt and vt are stationary random variates.

Equation (1) is a cointegrated regression equation. COINT contains rou-
tines for testing the null hypothesis that y and X possess unit roots (i.e., follow
(2)) and that ε is a stationary process. It also has routines which estimate
the cointegrating vector β. Routines for testing linear hypotheses on β using
Gaussian and chi-squared asymptotics are also provided.

In particular, the library contains routines for:

1. Testing the unit root hypothesis, including the:

(a) Phillips (1987) Zα and Zt statistics;

(b) Park–Choi (1988) G(p, q) and J(p, q) statistics;

(c) Said–Dickey (1984) Augmented Dickey–Fuller (ADF) statistic.

2. Testing the cointegration hypothesis (i.e., ε is stationary), including the:

(a) Phillips (1987) Zα and Zt statistics;

(b) Park (1992) H(p, q) statistic;

(c) Said–Dickey (1984) Augmented Dickey–Fuller statistic;

(d) Stock–Watson (1988) common trends statistic;

(e) Johansen (1988) trace statistic;

(f) Phillips–Ouliaris (1990) Pu and Pz statistics.

3. Estimating β, the cointegrating vector:

(a) Park (1992) Canonical Cointegrating Regression or “CCR” proce-
dure;

(b) Phillips–Hansen (1990) “fully modified” or “FM” procedure;

(c) Phillips (1990) spectral regression procedure;

(d) Phillips (1990) GIVE spectral regression procedure;

(e) Bandwidth versions of (3) and (4);

(f) Johansen (1988) “reduced rank regression” approach (i.e., maximum
likelihood);

(g) Saikkonen (1991) asymptotically efficient least squares estimator.
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4. Structural stability tests:

(a) Hansen (1991) Lc, MeanF, and SupF statistics for testing the null
hypothesis of no structural change in β.

Most of the procedures in COINT allow for deterministic polynomial trends
(of an arbitrary order) in the fitted regression. They also support automatic
bandwidth selection with autoregressive pre-filtering.
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COINT Source File: ARMA.SRC

Consider the ARMA(p, q) model:

a(L)y(t) = b(L)e(t) (3)

where e(t) is iid(0, σ2) and a(L) and b(L) are polynomials in the lag operator L
of degree p and q respectively. The polynomials a(L) and b(L) have no common
factors and have zeros outside the unit circle in the complex plane. The system
(3) is therefore stable and irreducible. The time series y(t) is stationary.

ARMA.SRC provides procedures for estimating the coefficients of (3) and
determining the orders of the polynomials a(·) and b(·). Graphics procedures
which show surfaces of the model selection criteria are also included. These can
be used to assess how well determined the selected orders of a(·) and b(·) are.
Some illustrations of the use of these programs and graphs are given in Phillips
(1994) and Phillips and Ploberger (1994).

In particular ARMA.SRC contains routines for:

1. Finding the order of an autoregression and the degree of a deterministic
trend (with graphics) using the:

(a) Akaike (1969) AIC criterion

(b) Schwarz (1978) BIC criterion

(c) Phillips–Ploberger (1994) PIC criterion

2. Finding the order of an autoregression, the degree of a deterministic trend
and testing for the presence of a unit root (with graphics):

(a) Phillips–Ploberger (1994) PIC criterion

3. Finding the lag orders of an ARMA process with a deterministic trend,
estimating the ARMA coefficients by recursive least squares and testing
for the presence of a unit root (with graphics) using

(a) The Hannan–Rissanen (1982) estimation procedure (2-stage; asymp-
totically inefficient)

(b) The Hannan–Rissanen (1982) estimation procedure (3-stage asymp-
totically efficient)

(c) The Hannan–Rissanen (1982)–Kavalieris (1991) ARMA model selec-
tion procedure (based on the BIC criterion)

(d) The Phillips–Ploberger (1994) PIC criterion.
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COINT Source File: LRVAR.SRC

LRVAR.SRC provides procedures for calculating the spectral density and
long-run variance of stationary time series. Some procedures are given for para-
metric ARMA models like (3), some procedures allow for data-driven kernel
techniques and other procedures combine AR- and ARMA-based prefiltering
algorithms with data driven kernel estimators. Some graphics procedures are
given which allow the methods to be compared in applications.

The library contains routines for

1. Finding and graphing the spectrum of an ARMA(p, q) process.

2. Estimating and graphing the spectrum of a stationary time series by:

(a) using the spectrum of an approximating ARMA model

(b) data-driven kernel estimation

(c) AR-prefiltered and recolored data-driven kernel estimation, see An-
drews–Monahan (1992)

(d) ARMA-prefiltered and recolored data-driven estimation, see Lee–Phillips
(1993)

3. Estimating the long-run variance of a time series by the same methods as
in (2) above

4. Finding the Phillips (1987) Zα and Zt unit root tests using automated
estimates of the long-run variance as in (B) and (C) above.
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COINT Source File: BAYES.SRC

BAYES.SRC contains procedures for the Bayesian analysis of nonstation-
ary regressions and cointegrating regressions. All of the procedures are based
on AR(p) and AR(p) + TR(pt) models where “TR(pt)” signifies a deterministic
trend of degree pt (with pt ≥ −1; here pt = −1 corresponds to no intercept,
pt = 0 corresponds to a fitted intercept and pt = 1 to a linear trend in the
regression, etc.). The procedures calculate the Bayesian posterior densities of
the long-run autoregressive coefficient (i.e., the sum of the autoregressive coef-
ficients) in these models under Jeffreys’ prior, the uniform prior and the e-prior
of Phillips (1991a) and Zivot & Phillips (1994). Laplace approximations are
used in the calculation of the marginal posterior densities — see Phillips (1983,
1991b) and Tierney & Kadane (1986). Graphics procedures are supplied which
graph several of the posterior densities on the same figure with user supplied ti-
tles and legends that specify the models, parameter settings and prior densities
that are used.

In particular BAYES.SRC contains routines for

1. Nonstationary regression analysis:

(a) Computing and graphing the marginal posterior density of the long-
run AR coefficient in an autoregression with deterministic trend using
the Jeffreys’ prior and a uniform prior. Posterior probabilities of
nonstationarity and near nonstationarity are calculated.

(b) Cointegrating regression residual analysis:

(c) Computing and graphing the marginal posterior density of the long-
run AR coefficient in an autoregression fitted to the residuals of a
cointegrating regression. The procedures use Jeffreys’ prior, a uni-
form prior and the e-prior of Phillips (1991a) and Zivot & Phillips
(1994). Posterior probabilities on nonstationarity and near nonsta-
tionarity are calculated. The are illustrated in Phillips (1992).
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COINT 2.1 Installation Instructions — GAUSS 3.0(+)
Required

The following instructions assume that you have installed GAUSS Version
3.0 (or higher) in C:\GAUSS, that you keep your *.SRC files in C:\GAUSS\SRC
and your *.LIB files in C:\GAUSS\LIB. They also assume that the COINT
distribution disk is in drive A. Please adjust the steps accordingly if you are
using different subdirectory names/source drive. Steps 1–3 below will enable
GAUSS to load the procedures automatically as they are called.

IMPORTANT: DO NOT FOLLOW THESE STEPS IF YOU ARE
USING VERSION 2.2 (or earlier) OF GAUSS, OR YOUR VERSION
OF GAUSS DOES NOT SUPPORT COMPLEX ARITHMETIC. YOU
MUST HAVE GAUSS 3.0 OR HIGHER TO USE COINT 2.0.

1. Copy A:\LCG\*.SRC to C:\GAUSS\SRC.

2. Copy A:\LCG\COINT.LCG to C:\GAUSS\LIB.

3. Edit your STARTUP file (usually in C:\GAUSS) and include the line:

LIBRARY GAUSS COINT PGRAPH;

(i.e., add ‘‘COINT PGRAPH’’ to your existing LIBRARY statement).

4. (OPTIONAL) Copy the A:\LCG\*.EX and A:\LCG.OUT files to your
hard disk. The *.EX files demonstrate how to call the procedures in
COINT.LIB. The *.OUT files contain the output you should get from the
*.EX files.
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UNIT.SRC: Unit Root Procedures
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ADF(y, p, l)
PURPOSE

• Computes the Augmented Dickey–Fuller (ADF) statistic for the null hy-
pothesis that y has a unit root.

FORMAT

• {alpha,tstat,c t} = adf(y,p,l);

INPUTS

• y time-series variable (nobs × 1)

• p order of the time polynomial in the fit-

ted regression

• l number of lagged first difference terms

in the fitted regression
OUTPUTS

• alpha estimate of the first-order autoregres-

sive parameter

• tstat ADF t-statistic

• c t (6×1) vector containing the critical val-

ues {1%, 5%, 10%, 90%, 95%, 99%}
DECISION RULE

• Reject the null hypothesis of a unit root if the ADF statistic ≤ critical
value.

REMARKS

1. Set p = −1 for no deterministic part in the fitted regression.

2. Set p = 0 for a constant term in the fitted regression.

3. Set p = 1 for a constant term and trend in the fitted regression.
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4. Critical values are available for p ∈ [−1, 5].

5. Set l = 0 to obtain the standard Dickey–Fuller statistic.

6. Illustration program: adf.ex.

EXAMPLE

{a,b,c} = adf(y,1,5);

‘‘Autoregressive parameter =’’ a;

‘‘ADF t-statistic for y =’’ b; ‘‘1% critical value =’’ c[1,1];

‘‘5% critical value =’’ c[2,1];

REFERENCE

Said, S. E. & D. A. Dickey (1984) “Testing for Unit Roots in Autoregres-
sive Moving Average Model of Unknown Order,” Biometrika, 71: 599–607.
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CZA(y, x, p, l)
PURPOSE

• Test the null hypothesis of no cointegration between y and x using Phillips’
(1987) Zα and Zt statistics and Phillips and Ouliaris (1990) limit theory.

FORMAT

• {alpha,xza,xzt,c za,c zt} = cza(y,x,p,l);

INPUTS

• y time-series variable (nobs × 1)

• x explanatory variables (nobs × k)

• p order of the time polynomial in the cointegrating regressio

• l number of autocovariance terms for computing the spectrum at
frequency zero

OUTPUTS

• alpha estimate of the first order autoregressive parameter

• xza Zα statistic

• xzt Zt statistic

• c za (6×1) vector containing the critical values for Zα {1%, 5%, 10%, 90%, 95%, 99%}

• c zt (6×1) vector containing the critical values for Zt {1%, 5%, 10%, 90%, 95%, 99%}

DECISION RULE

• Reject the null hypothesis of no cointegration if the Z statistic ≤ critical
value.

GLOBALS

1. ker fun; aband; filter

2. Please refer to KERNELS.SRC for a detailed explanation of these global
constants.
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REMARKS

1. Set p = −1 to have no deterministic term in the cointegrating regression.

2. Set p = 0 for a constant term.

3. Set p = 1 for a constant term and trend.

4. Critical values are available for p ∈ [−1, 5].

5. Illustration program: cza.ex.

EXAMPLE

ker fun = &parzen; /* Select Parzen kernel (see KERNELS.SRC) */
aband = 0; /* Automatic bandwidth selection disabled */
filter = 1; /* Enable estimation of spectrum using AR(1) filter */
{a,b,c,d,e} = cza(y,x,1,5); ‘‘Zt statistic for residuals

=’’ c; ‘‘5% critical value =’’ e[2,1];

REFERENCE

Phillips, P. C. B. & S. Ouliaris (1990) “Asymptotic Properties of Resid-
ual Based Tests for Cointegration,” Econometrica, 58: 165–193.

15



CADF(y, x, p, l)
PURPOSE

• Tests the null hypothesis of no cointegration between y and x using the
Said and Dickey (1984) Augmented Dickey–Fuller statistic.

FORMAT

• {alpha,tstat,c t} = cadf(y,x,p,l);

INPUTS

• y dependent variable (nobs × 1)

• x explanatory variables (nobs × k)

• p order of the time polynomial in the cointegrating regression

• l number of lagged first difference terms in the ADF regression

OUTPUTS

• alpha estimate of the first-order autoregressive parameter

• tstat ADF t-statistic

• c t (6×1) vector containing the critical values {1%, 5%, 10%, 90%,
95%, 99%}

DECISION RULE

• Reject the null hypothesis of no cointegration if the ADF statistic≤ critical
value.

REMARKS

1. Set p = −1 to have no deterministic part in the cointegrating regression.

2. Set p = 0 for a constant term.

3. Set p = 1 for a constant term and trend.

4. Critical values are available for p ∈ [−1, 5].

5. Set l = 0 to obtain the standard Dickey–Fuller statistic.

6. Illustration program: cadf.ex.

EXAMPLE

{a,b,c} = cadf(y,x,1,5); ‘‘ADF t-statistic =’’ b;

‘‘5% critical value =’’ c[2,1];
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REFERENCES
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GSTAT(y, p, q, v)
PURPOSE

• Computes the Park and Choi (1988) G(p, q) statistic for the null hypoth-
esis that y is stationary around a p-th order polynomial time trend.

FORMAT

• {g,gp} = gstat(y,p,q,v);

INPUTS

• y time-series variable (nobs × 1)

• p order of the time polynomial in the null hypothesis

• q order of the time polynomial in the fitted regression

• l number of autocovariance terms for computing the spectrum at
frequency zero

OUTPUTS

• g computed value of the G-statistic

• gp p-value of the G(p, q) statistic, taken from chi-squared distribution
with q–p degrees of freedom

DECISION RULE

• Reject the null hypothesis of stationarity if g ≥ critical value.

GLOBALS

• ker fun; aband; filter

• See KERNELS.SRC for a detailed explanation of these global parame-
ters.

REMARKS

1. Set p = −1 to have no deterministic part in the null hypothesis.

2. Set p = 0 for stationarity around a constant term.

3. Set p = 1 for stationarity around a constant term and trend.

4. Illustration program: gstat.ex.
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EXAMPLE

ker fun = &parzen; /* Use the Parzen kernel */
aband = 1; /* Automatic bandwidth enabled (= 1) */
filter = 0; /* Do not use AR(1) filter to estimate spectrum */
{g,gp} = gstat(y,1,5,20); ‘‘G(1,5) =’’ g ‘‘p-value =’’ gp;

ker fun = &tukham; /* Recompute using the Tukey–Hamming kernel */
{g,gp} = gstat(y,1,5,20) ‘‘Tukey-Hamming Kernel’’;

‘‘G(1,5) =’’ g ‘‘p-value =’’ gp;

REFERENCE

Park, J. Y. & B. Choi (1988) “A New Approach to Testing for a Unit Root,”
Wo rking Paper #88–23, Department of Economics, Cornell University.
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JSTAT(y, p, q)
PURPOSE

• Computes the Park and Choi (1988) J(p, q) statistic for the null hypothesis
that y has a unit root after allowing for a p-th order polynomial time trend.

FORMAT

• {js,cv} = jstat;(y,p,q);

INPUTS

• y time-series variable (nobs × 1)

• p order of the time polynomial in the null hypothesis

• q order of the time polynomial in the fitted regression

OUTPUTS

• js computed value of the J(p, q)-statistic

• cv (6×1) vector of critical values {1%, 5%, 10%, 90%, 95%, 99%}

DECISION RULE

• Reject the null hypothesis of a unit root if js ≤ critical value.

REMARKS

1. Set p = −1 to have no deterministic part in the null hypothesis.

2. Set p = 0 for nonstationarity around a constant term.

3. Set p = 1 for nonstationarity around a constant term and trend.

4. Critical values are available for q − p: 0 ≤ q − p ≤ 11.

5. Illustration program: jstat.ex.

EXAMPLE

{j,cv} = jstat(y,1,5); ‘‘J(1,5) =’’ j ‘‘c-value =’’ cv[2,1];

REFERENCE

Park, J. Y. & B. Choi (1988) “A New Approach to Testing for a Unit Root,”
Working Paper #88–23, Department of Economics, Cornell University.
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ZA(y, p, l)
PURPOSE

• Computes Phillips’ (1987) Zα and Zt statistics for the null hypothesis that
y has a unit root.

FORMAT

• {alpha,xza,xzt,c za,c zt} = za(y,p,l);

INPUTS

• y time-series variable (nobs × 1)

• p order of the time polynomial in the fitted regression

• l number of autocovariance terms to compute the spectrum at frequency
zero

OUTPUTS

• alpha alpha estimate of the first order autoregressive parameter

• xza Zα statistic

• xzt Zt statistic

• c za (6×1) vector containing the critical values for Zα {1%, 5%, 10%, 90%, 95%, 99%}

• c zt (6×1) vector containing the critical values for Zt {1%, 5%, 10%, 90%, 95%, 99%}

DECISION RULE

• Reject the null hypothesis of a unit root if the Z statistic ≤ critical value.

GLOBALS

• ker fun; aband; filter

• See KERNELS.SRC for a detailed explanation of the global constants.

REMARKS

1. Set p = −1 to have no deterministic part in the fitted regression.

2. Set p = 0 to include a constant term in the fitted regression.

3. Set p = 1 to include a constant term and time trend in the fitted regression.

4. Critical values are available for p ∈ [−1, 5].

5. Illustration program: za.ex.
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EXAMPLE

ker fun = &parzen /* Use the Parzen window */;
aband = 0; /* Automatic bandwidth disabled */
filter = 1; /* Use AR(1) filter to estimate the spectrum */
{a,b,c,d,e} = za(y,1,5); ‘‘Zt statistic for y =’’ c;

‘‘5% critical value =’’ e[2,1];

REFERENCES

Ouliaris, S., J. Y. Park & P. C. B. Phillips (1989) “Testing for a Unit Root in
the Presence of a Maintained Trend,”Ch. 1 in Baldev Raj (ed.), Ad-
vances in Econometrics and Modelling. Netherlands: Kluwer Aca-
demic Publishers.

Phillips, P. C. B. (1987) “Time Series Regression with a Unit Root,” Econo-
metrica, 55: 277–301.
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SW(y, p, l)
PURPOSE

• Computes Stock and Watson (1988) common trends statistic for the null
hypothesis that y is a noncointegrated system (after allowing for a p-th
order polynomial time trend).

FORMAT

• {sw stat,c sw} = sw(y,p,l);

INPUTS

• y matrix of time-series variables (nobs × k)

• p order of the time polynomial in the null hypothesis

• l number of autocovariance terms to compute the spectrum at
frequency zero

OUTPUTS

• sw stat (k × 1) vector containing the SW statistics, in ascending order
(maximum to minimum)

• c sw (6×1) vector containing the critical value of the smallest SW
statistic {1%, 5%,10%, 90%, 95%, 99%}

DECISION RULE

• Reject the null hypothesis of a unit root if the SW statistic ≤ critical
value.

GLOBALS

• ker fun; aband; filter

• See KERNELS.SRC for an explanation of these global constants.

REMARKS

1. Set p = −1 to have no deterministic part in the null hypothesis.

2. Set p = 0 for a constant term.

3. Set p = 1 for a constant term and trend.

4. SW( ) uses the GAUSS routine EIGRG2(x), which sets the global vari-
able eigerr. Refer to the GAUSS manual for more details.

5. Critical values are available for p ∈ [−1, 5].

6. Illustration program: sw.ex.
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EXAMPLE

/* Assume y is nobs × 5 in the following example */
ker fun = &parzen; /* Use the Parzen kernel */
aband = 0; /* Disable automatic bandwidth selection */
filter = 1; /* Use an AR(1) filter to estimate the spectrum */
a = sw(y,1,5); ‘‘Stock-Watson statistic for null hypothesis of

no cointegration:’’ a[5,1];

REFERENCE

Stock, J. & M. K. Watson (1988) “Testing for Common Trends,” Journal
of the American Statistical Association, 83: 1097–1107.
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PU(y, x, p, l)
PURPOSE

• Computes the Pu statistic for the null-hypothesis that y and x are not
cointegrated.

FORMAT

• {p1,p2} = pu(y,x,p,l);

INPUTS

• y dependent variable (nobs × 1)

• x explanatory variables (nobs × k)

• p order of the time polynomial in the fitted regression

• l number of autocovariance terms to compute the spectrum at frequency
zero

OUTPUTS

• p2 Pu statistic

• p1 (6×1) vector of critical values for the Pu statistic {1%, 5%, 10%, 90%, 95%, 99%}

DECISION RULE

• Reject the null hypothesis of no cointegration if the Pu statistic is ≥ the
critical value.

GLOBALS

• ker fun; aband; filter

• See KERNELS.SRC for a detailed explanation of the global constants.

REMARKS

1. Set p = −1 to have no deterministic part in the cointegrating regression.

2. Set p = 0 to include a constant term in the cointegrating regression.

3. Set p = 1 to include a constant term and trend.

4. Critical values are available for p ∈ [−1, 5].

5. Illustration program: pupz.ex.
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EXAMPLE

/* Compute Pu statistic using the Parzen kernel */
ker fun = &parzen; /* Use Parzen kernel */
aband = 0; /* Automatic bandwidth selection disabled */
filter = 1; /* Use and AR(1) filter to estimate the spectrum */
{p1,p2} = pu(y,x,0,20);

‘‘PU statistic =’’ p1;

‘‘Critical value (@ 5% level) =’’ p2[5,1];

REFERENCE

Phillips, P. C. B. & S. Ouliaris (1990) “Asymptotic Properties of Resid-
ual Based Tests for Cointegration,” Econometrica, 58: 165–193.
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PZ(y, x, p, l)
PURPOSE

• Computes the Pz statistic for the null-hypothesis that y and x are not
cointegrated.

FORMAT

• {p1,p2} = pz(y,x,p,l);

INPUTS

• y dependent variable (nobs × 1)

• x explanatory variables (nobs × k)

• p order of the time polynomial in the fitted regression

• l number of autocovariance terms to compute the spectrum at frequency
zero

OUTPUTS

• p1 Pz statistic

• p2 (6×1) vector of critical values for the Pz statistic {1%, 5%, 10%, 90%, 95%, 99%}

DECISION RULE

• Reject the null hypothesis of no cointegration if the Pz statistic is ≥ the
critical value.

GLOBALS

• ker fun; aband; filter

• See KERNELS.SRC for a detailed explanation of the global constants.

REMARKS

1. Set p = −1 to have no deterministic part in the cointegrating regression.

2. Set p = 0 to include a constant term in the cointegrating regression.

3. Set p = 1 to include a constant term and trend.

4. Critical values are available for p ∈ [−1, 5].

5. Illustration program: pupz.ex.
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EXAMPLE

ker fun = &parzen; /* Use Parzen window */
aband = 1; /* Automatic bandwidth selection enabled */
filter = 0; /* AR(1) filter disabled */
{p1,p2} = pz(y,x,0,20);

‘‘PZ statistic =’’ p1;

‘‘Critical value (5% level) =’’ p2[5,1];

REFERENCE

Phillips, P. C. B. & S. Ouliaris (1990) “Asymptotic Properties of Residual
Based Tests for Cointegration,” Econometrica, 58: 165–193.

28



29



CREGRS.SRC

Regression Procedures for

Cointegrated Systems
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CCR(y, x, d, l)
PURPOSE

• Computes Park’s (1992) Canonical Cointegrating Regression estimator for
cointegrated regression models, using OLS for the first stage regression.

FORMAT

• {beta,vc,stderr,sigma,tstats,rss,resid,dummy} = ccr(y,x,d,l);

INPUTS

• y dependent variable (nobs × 1)

• x explanatory variables (nobs × k)

• d deterministic part of the fitted regression

• l number of autocovariance terms to compute the spectrum at frequency
zero

OUTPUTS

• beta (cols(x)+cols(d))×1) vector containing the parameter estimates

– beta[1:cols(x),1] contains the coefficients of x; the remaining ele-
ments are the coefficients on the deterministic variables in the fitted
regression

• vc variance matrix for the parameter estimates

• stderr standard errors of the parameter estimates

• sigma standard error of the residuals

• tstats t-statistics for the parameter estimates

• rss residual sum of squares

• resid estimated residuals [nobs × 1]

• dummy dummy vector (3×1) vector of zeros

GLOBALS

• ker fun; aband; filter; NoDet

• Set ker fun to one of the available kernels (see KERNELS.SRC) before
using CCR.
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EXAMPLE

/* Cointegrating Regression: y = a+Xb+ e */
/* Automatic bandwidth disabled — aband = 0; Use AR(1) filter when

computing the
spectrum at frequency zero. */
ker fun = &parzen; aband = 0; filter = 1;

dd = ones(rows(y),1); {a,b,c,d,e,f,g,h} = ccr(y,x,dd,10);

“CCR X beta estimates, t-statistics:” a[1:cols(x),1]

e[1:cols(x),1];

“CCR estimate for constant term:” a[cols(x)+1:cols(x)+1,1]

∼e[cols(x)+1:cols(x)+1,1];
/* Suppress the deterministic part (i.e., the constant term in this example)

by setting NoDet = 1 */
NoDet = 1; {a,b,c,d,e,f,g,h} = ccr(y,x,dd,20);

NoDet = 0; ‘‘CCR X beta estimates, t-statistics:’’

a[1:cols(x),1] ∼e[1:cols(x),1];

REFERENCE

Park, J. Y. (1992) “Canonical Cointegrating Regressions,” Econometrica, 60:
119–144.
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FM(y, x, d, l)
PURPOSE

• Computes the Phillips–Hansen (1990) “Fully-Modified” estimator for coin-
tegrated regressions, using OLS for the first stage regression.

FORMAT

• {beta,vc,stderr,sigma,tstats,rss,resid,stests} = fm(y,x,d,l);

INPUTS

• y dependent variable (nobs × 1)

• x explanatory variables (nobs × k)

• d deterministic part of the fitted regression

• l number of autocovariance terms to compute the spectrum at frequency
zero

OUTPUTS

• beta (cols(x)+cols(d))×1) vector containing the parameter estimates

– beta[1:cols(x),1] contains the coefficients of x; the remaining ele-
ments are the coefficients on the deterministic variables in the fitted
regression}

• vc variance matrix for the parameter estimates

• stderr standard errors of the parameter estimates

• sigma standard error of the residuals

• tstats t-statistics for the parameter estimates

• rss residual sum of squares

• resid estimated residuals [nobs × 1]

• stests 3×1 vector containing Hansen’s (1991) Lc, MeanF, and SupF (in
this order) statistics for testing the null hypothesis that the cointegrating
vector is stable over the sample period

33



GLOBALS

• ker fun; aband ; filter ; sbstart, sbend; NoDet

• Set ker fun to one of the available kernels (see KERNELS.SRC) before
using FM.

• See KERNELS.SRC for a detailed explanation of the other global con-
stants.

EXAMPLE

/* Cointegrating Regression: y = a+Xb+ e */
ker fun = &parzen; aband = 1; filter = 1;

dd = ones(rows(y),1); {a,b,c,d,e,f,g} = fm(y,x,dd,10);

‘‘FM X beta estimates, t-statistics:’’ a[1:cols(x),1]

e[1:cols(x),1];

‘‘FM estimate for constant term:’’ a[cols(x)+1:cols(x)+1,1]

e[cols(x)+1:cols(x)+1,1];

REFERENCES

Hansen, B. E. (1992) “Tests for Parameter Instability in Regressions with
I(1) Processes,” Journal of Business and Economic Statistics, 10: 321–335.

Phillips, P. C. B. & B. E. Hansen (1990) “Statistical Inference in Instru-
mental Variables Regression with I(1) Processes,” Review of Economic
Studies, 57: 99–125.
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FM OLS(y, z, d, l)
PURPOSE

• Computes the Phillips’ (1993) “Fully-Modified” OLS estimator for single
equation and multivariate cointegrated regression models.

FORMAT

• {beta,vc} = fm ols(y,x,d,l);

INPUTS

• y dependent variable (nobs × n)

• x explanatory variables (nobs × m)

• d deterministic part in the fitted regression

• l number of autocovariance terms to compute the spectrum at frequency
zero

OUTPUTS

• beta (m+cols(d))×n vector containing the parameter estimates

– beta[1:m,.] contains the coefficients of x; the remaining elements
are the coefficients on the deterministic variables in the fitted regres-
sion}

• vc variance matrix for the parameter estimates

GLOBALS

• ker fun; aband ; filter ; NoDet

• Set ker fun to one of the available kernels (see KERNELS.SRC) before
using FM OLS.

• See KERNELS.SRC for a detailed explanation of the other global con-
stants.

EXAMPLE

/* Cointegrating Regression: y = a+Xb+ e */
ker fun = &parzen; aband = 1; filter = 1;

dd = ones(rows(y),1); {bhat,vc} = fm ols(y,x,dd,5);

‘‘FM OLS X beta estimates:’’ bhat[1:cols(x),1:cols(y)];

‘‘FM OLS estimate for the deterministic part’’ bhat[cols(x)+1:

cols(x)+n,1:cols(y)]

‘‘Now drop the deterministic term (dd) by setting NoDet = 1’’;

NoDet = 1;

{bhat,vc} = fm ols(y,x,d,10);

‘‘FM X beta estimates:’’ bhat[1:cols(x),1];

35



REFERENCE

Phillips, P. C. B (1995) “Fully Modified Least Squares and Vector Autoregres-
sion,” Econometrica, 63: 1023–1078.
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FM VAR(y, d, k, l)
PURPOSE

• Computes the Phillips’ (1993) “Fully-Modified” VAR estimator for coin-
tegrated regressions, using OLS for the first stage regression.

FORMAT

• {beta,vc} = fm var(y,d,k,l);

INPUTS

• y dependent variable (nobs × n)

• d deterministic part in the fitted regression

• k number of lagged innovation terms to include in the fitted regression
(∆yt−1, ..., ∆yt−k+1)

• l number of autocovariance terms to compute the spectrum at
frequency zero

OUTPUTS

• beta [(k-1)*n+n+cols(d)]×n vector containing the parameter esti-
mates

– beta[1:(k-1)*n,.] contains the coefficients of the lagged innova-
tion terms;

– beta[(k-1)*n+1:k*n,.] contains the coefficients on the lagged de-
pendent variables;

– the remaining elements are the coefficients on the deterministic vari-
ables in the fitted regression.

• vc variance matrix for the parameter estimates

GLOBALS

• ker fun; aband ; filter ; NoDet

• Set ker fun to one of the available kernels (see KERNELS.SRC) before
using FM VAR.

• See KERNELS.SRC for a detailed explanation of the other global con-
stants.
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EXAMPLE

ker fun = &parzen; aband = 1; filter = 1;

dd = ones(rows(y),1); {a,b} = fm var(y,dd,5,5);

‘‘FM VAR lagged innovation parameter estimates:’’

a[1:4*n,1:cols(y)];

‘‘FM VAR lagged Y estimates:’’ a[4*n+1:5*n,1:cols(y)];

‘‘FM VAR estimate for constant term:’’ a[5*n+1:6*n,1:cols(y)];

‘‘Drop the constant term.by setting NoDet = 1’’;

NoDet = 1;

{a,b} = fm var(y,d,5,5);

‘‘FM VAR lagged Y estimates:’’ a[4*n+1:5*n,1:cols(y)];

REFERENCE

Phillips, P. C. B (1995) “Fully Modified Least Squares and Vector Autore-
gression,” Econometrica, 63: 1023–1078.
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FM GIVE(y, x, z, l, t)
PURPOSE

• Computes the Kitamura–Phillips (1997) “Fully-Modified” GIVE estimator
for single equation and multivariate cointegrated regression models.

FORMAT

• {beta,vc,lromega,s1,s2} = fm give(y,x,z,l,t);

INPUTS

• y dependent variables (nobs × n)

• x integrated explanatory variables (nobs × m)

• z instrumental variables (nobs × z)

• l number of autocovariance terms to compute spectrums at frequency
zero

• t number of terms to use in the computation of the WT matrix

OUTPUTS

• beta m× n vector containing the parameter estimates

• vc variance–covariance matrix of the parameter estimates

• lromega long-run variance–covariance matrix of residuals (n× n)

• s1 first statistic for testing validity of overidentifying restrictions

• s2 second statistic for testing validity of overidentifying restrictions

GLOBALS

• ker fun; aband; filter

• Set ker fun to one of the available kernels (see KERNELS.SRC) be-
fore using FM GMM.

• See KERNELS.SRC for a detailed explanation of the other global con-
stants.

EXAMPLE

/* Cointegrating Regression: y = a+Xb+ e */
ker fun = &parzen; aband = 1; filter = 1;

{bhat,vc,lromega,s1,s2} = fm give(y,x,z,5,3);

‘‘FM GIVE X beta estimates:’’ bhat;

REFERENCE

Kitamura, Y. & P. C. B. Phillips (1997) “Fully Modified IV, GIVE and
GMM Estimation with Possibly Nonstationary Regressors and Instru-
ments,” Journal of Econometrics, 80: 85 –123.
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FM GMM(y, x, z, l)
PURPOSE

• Computes the Kitamura–Phillips (1997) “Fully-Modified” GMM estima-
tor for single equation and multivariate cointegrated regression models.

FORMAT

• {beta,vc,lromega,s1,s2} = fm gmm(y,x,z,l);

INPUTS

• y dependent variables (nobs × n)

• x integrated explanatory variables (nobs × m)

• z instrumental variables (nobs × z)

• l number of autocovariance terms to compute spectrums at frequency
zero

OUTPUTS

• beta m× n vector containing the parameter estimates

• vc variance–covariance matrix of the parameter estimates

• lromega long-run variance–covariance matrix of residuals (n× n)

• s1 first statistic for testing validity of overidentifying restrictions

• s2 second statistic for testing validity of overidentifying restrictions

GLOBALS

• ker fun; aband; filter

• Set ker fun to one of the available kernels (see KERNELS.SRC) be-
fore using FM GIVE.

• See KERNELS.SRC for a detailed explanation of the other global con-
stants.

EXAMPLE

/* Cointegrating Regression: y = a+Xb+ e */
ker fun = &parzen; aband = 1; filter = 1;

{bhat,vc,lromega,s1,s2} = fm gmm(y,x,z,5,3);

‘‘FM GIVE X beta estimates:’’ bhat;

REFERENCE

Kitamura, Y. & P. C. B. Phillips (1997) “Fully Modified IV, GIVE and
GMM Estimation with Possibly Nonstationary Regressors and Instru-
ments,” Journal of Econometrics, 80: 85 –123.
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PCB(y, x, d, M)
PURPOSE

• Computes Phillips’ (1990) spectral estimator for cointegrated regression
models.

FORMAT

• {beta,vc,stderr,tstats} = pcb(y,x,d,M);

INPUTS

• y dependent variable (nobs × 1)

• x explanatory variables (nobs × k)

• d deterministic part in the fitted regression (nobs × cols(d))

• M bandwidth parameter

OUTPUTS

• beta (k × 1) vector containing the parameter estimates

• vc variance matrix for the parameter estimates

• stderr standard errors of the parameter estimates

• tstats t-statistics for the parameter estimates

GLOBALS

• Set NoDet = 1 to exclude the deterministic part from the cointegrating
regression.

REMARK

1. The procedure calculates the spectrum by taking simple averages of the
periodograms within a particular band. The number of periodogram or-
dinates is given by nt(y)/(2M), where nt(y) = number of observations
augmented to the nearest power of 2.

EXAMPLE

/* Cointegrating Regression: y = a+Xb+ e */
{a,b,c,d} = pcb(y,x,ones(rows(x),1),2);

‘‘PCB beta estimates, t-statistics:’’ a∼d;
/* Now use demeaned data, and suppress the constant term */
dummy = ones(rows(x),1); NoDet = 1;

{a,b,c,d} = pcb(detrend(y,0), detrend(x,0), dummy,2);

‘‘PCB beta estimates, t-statistics:’’ a∼d;
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REFERENCE

Phillips, P. C. B. (1990) “Spectral Regression for Cointegrated Time Se-
ries,” in W. Barnett (ed.), Nonparametric and Semiparametric Methods
in Economics and Statistics. Cambridge: Cambridge University Press.
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PCBBW(y, x, d, f, M)
PURPOSE

• Computes Phillips’ (1990) spectral estimator for cointegrated regression
models, using the periodogram ordinates indicated by f .

FORMAT

• {beta,vc,stderr,tstats} = pcbbw(y,x,d,f,M);

INPUTS

• y dependent variable (nobs × 1)

• x explanatory variables (nobs × k)

• d deterministic part (nobs × cols(d))

• f nt(y)× 1 indicator vector

• M bandwidth parameter

OUTPUTS

• beta (k × 1) vector containing the parameter estimates

• vc variance–covariance matrix for the parameter estimates

• stderr standard errors of the parameter estimates

• tstats t-statistics for the parameter estimates.

GLOBALS

• Set NoDet = 1 to exclude the deterministic part from the cointegrating
regression.

REMARKS

1. The procedure calculates the spectrum by taking simple averages of the
periodograms within a particular band. The number of periodogram or-
dinates is given by nt(y)/(2M), where nt(y) = number of observations
augmented to the nearest power of 2.

2. The f vector allows you to exclude periodogram ordinates. It must contain
zeros or ones (and nothing else). Set f [i, 1] = 0.0 to exclude the i-th
ordinate (where i is relative to [0, 2π)), and f [j, 1] = 1.00 to include the
j-th ordinate. The f vector MUST have dimension nt(y)× 1.
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EXAMPLE

/* Cointegrating Regression: y = a+Xb+ e */
/* Estimate over the interval [π/3, π] */
ZeroFreq = round(nt(y)/3); /* Number of ordinates to exclude, starting

from the zero frequency */
f = ones(nt(y),1); f[1:ZeroFreq+1,1] = zeros(ZeroFreq+1,1);

f[nt(y)-ZeroFreq+1:nt(y),1] = zeros(ZeroFreq,1);

NoDet = 1; /* Suppress the constant term over the high frequencies */
{a,b,c,d} = pcbbw(detrend(y,0), detrend(x,0),

ones(rows(x),1),f,2);

‘‘PCB bandwidth beta estimates, t-statistics:’’ a∼d;

REFERENCE

Phillips, P. C. B. (1990) “Spectral Regression for Cointegrated Time Se-
ries,” in W. Barnett (ed.), Nonparametric and Semiparametric Methods
in Economics and Statistics. Cambridge: Cambridge University Press.
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PCBZ(y, x, d, M)
PURPOSE

• Computes Phillips’ (1990) spectral estimator for cointegrated regression
models, using the low-frequency ordinates (i.e., β(0)).

FORMAT

• {beta,vc,stderr,tstats} = pcbz(y,x,d,M);

INPUTS

• y dependent variable (nobs × 1)

• x explanatory variables (nobs × k)

• d deterministic part of the cointegrating regression

• M bandwidth parameter

OUTPUTS

• beta (k × 1) vector containing the parameter estimates

• vc variance–covariance matrix for the parameter estimates

• stderr standard errors of the parameter estimates

• tstats t-statistics for the parameter estimates

GLOBALS

• NoDet

• Set NoDet = 1 to exclude the deterministic part from the cointegrating
regression.

REMARK

1. The procedure calculates the spectrum by taking simple averages of the pe-
riodograms within a particular band. This routine uses the zero-frequency
spectrum to compute the parameters of the cointegrating regression. The
number of periodogram ordinates is given by nt(y)/(2M), where nt(y) =
number of observations augmented to the nearest power of 2.

EXAMPLE

/* Cointegrating Regression: y = a+Xb+ e */
/* Compute using PCBZ, allowing for a constant (default) */
{a,b,c,d} = pcbz(y,x,ones(rows(y),1),2);

‘‘PCB beta(0) estimates, t(0)-statistics:’’ a∼d;
REFERENCE

Phillips, P. C. B. (1990) “Spectral Regression for Cointegrated Time Series,”
in W. Barnett (ed.), Nonparametric and Semiparametric Methods in
Economics and Statistics. Cambridge: Cambridge University Press.
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GPCB(y, x, z,d, M)
PURPOSE

• Computes Phillips’ (1990) GIVE spectral estimator for cointegrated re-
gression models.

FORMAT

• {beta,vc,stderr,tstats} = gpcb(y,x,z,d,M);

INPUTS

• y dependent variable (nobs × 1)

• x explanatory variables (nobs × k)

• z instrumental variables (nobs × cols(z))

• d deterministic part (nobs × cols(d))

• M bandwidth parameter

OUTPUTS

• beta (k × 1) vector containing the parameter estimates

• vc variance–covariance matrix for the parameter estimates

• stderr standard errors of the parameter estimates

• tstats t-statistics for the parameter estimates

GLOBALS

• NoDet

• Set NoDet = 1 to exclude the deterministic part from the cointegrating
regression.

REMARK

1. The procedure calculates the spectrum by taking simple averages of the
periodograms within a particular band. The number of periodogram or-
dinates is given by nt(y)/(2M), where nt(y) = number of observations
augmented to the nearest power of 2.

EXAMPLE

/* Cointegrating Regression: y = a+Xb+ e */
{a,b,c,d} = gpcb(y,x,z,ones(rows(x),1),2);

‘‘PCB GIVE beta estimates, t-statistics:’’ a∼d;
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REFERENCES

Corbae, P. D., S. Ouliaris & P. C. B. Phillips (1994) “A Reexamination of the
Consumption Function Using Frequency Domain Regressions,” Jour-
nal of Empirical Economics, 19: 595–609.

Phillips, P. C. B. (1990) “Spectral Regression for Cointegrated Time Series,”
in W. Barnett (ed.), Nonparametric and Semiparametric Methods in
Economics and Statistics. Cambridge: Cambridge University Press.
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GPCBBW(y, x, z, d, f, M)
PURPOSE

• Computes Phillips’ (1990) GIVE spectral estimator for cointegrated re-
gression models, using the periodogram ordinates indicated by f .

FORMAT

• {beta,vc,stderr,tstats} = gpcbbw(y,x,z,d,f,M);

INPUTS

• y dependent variable (nobs × 1)

• x explanatory variables (nobs × k)

• z instrumental variables (nobs × cols(z))

• d deterministic part in the fitted regression (nobs × cols(d))

• f nt(y)× 1 indicator vector

• M bandwidth parameter

OUTPUTS

• beta (k × 1) vector containing the parameter estimates

• vc variance–covariance matrix for the parameter estimates

• stderr standard errors of the parameter estimates

• tstats t-statistics for the parameter estimates

GLOBALS

• NoDet

• Set NoDet = 1 to exclude the deterministic part from the cointegrating
regression.

REMARKS

1. The procedure calculates the spectrum by taking simple averages of the
periodograms within a particular band. The number of periodogram or-
dinates is given by nt(y)/(2M), where nt(y) = number of observations
augmented to the nearest power of 2.

2. The f vector allows you to exclude periodogram ordinates. It must contain
zeros or ones (nothing else).

3. Set f [i, 1] = 0.0 to exclude the i-th ordinate (where i set is relative to
[0, π)) and f [j, 1] = 1.00 to include the j-th ordinate. The f vector MUST
have dimension nt(y)× 1.

48



EXAMPLE

/* Cointegrating Regression: y = a+Xb+ e over the interval [π/3, π] */
ZeroFreq = round(nt(y)/3); /* Number of ordinates to exclude, starting

from the zero frequency */
f = ones(nt(y),1); f[1:ZeroFreq+1,1] = zeros(ZeroFreq+1,1);

f[nt(y)-ZeroFreq+1:nt(y),1] = zeros(ZeroFreq,1); NoDet = 1;

{a,b,c,d} = gpcbbw(detrend(y,0), detrend(x,0),

detrend(rows(z),0), ones(rows(x),1),f,2);

REFERENCES

Corbae, P. D., S. Ouliaris & P. C. B. Phillips (1994) “A Reexamination of the
Consumption Function Using Frequency Domain Regressions,” Jour-
nal of Empirical Economics, 19: 595–609.

Phillips, P. C. B. (1990) “Spectral Regression for Cointegrated Time Series,”
in W. Barnett (ed.), Nonparametric and Semiparametric Methods in
Economics and Statistics. Cambridge: Cambridge University Press.
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GCBZ(y, x, z, d, M)
PURPOSE

• Computes Phillips’ (1990) GIVE spectral estimator for cointegrated re-
gression models, using the low-frequency ordinates (i.e., βZ(0)).

FORMAT

• {beta,vc,stderr,tstats} = gpcbz(y,x,z,d,M);

INPUTS

• y dependent variable (nobs × 1)

• x explanatory variables (nobs × k)

• z instrumental variables

• d deterministic part in the fitted regression (nobs × cols(d))

• M bandwidth parameter

OUTPUTS

• beta (k × 1) vector containing the parameter estimates

• vc variance–covariance matrix for the parameter estimates

• stderr standard errors of the parameter estimates

• tstats t-statistics for the parameter estimates

GLOBALS

• NoDet

• Set NoDet = 1 to suppress the deterministic part from the cointegrating
regression.

REMARK

1. The procedure calculates the spectrum by taking simple averages of the
periodograms within a particular band. In contrast to GPCB, GPCBZ
uses only the zero-frequency spectrum to compute the parameters of the
cointegrating regression. The number of periodogram ordinates is given
by nt(y)/(2M), where nt(y) = number of observations augmented to the
nearest power of 2.

EXAMPLE

/* Cointegrating Regression: y = a+Xb+ e */
{a,b,c,d} = gpcbz(y,x,z,ones(rows(x),1),2);

‘‘PCB GIVE beta(0) estimates, t(0)-statistics:’’ a∼d;
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REFERENCES

Corbae, P. D., S. Ouliaris and P. C. B. Phillips (1994) “A Reexamination of the
Consumption Function Using Frequency Domain Regressions,” Jour-
nal of Empirical Economics, 19: 595–609.

Phillips, P. C. B. (1990) “Spectral Regression for Cointegrated Time Series,”
in W. Barnett (ed.), Nonparametric and Semiparametric Methods in
Economics and Statistics. Cambridge: Cambridge University Press.
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SJ(x, p, k)
PURPOSE

• Computes Johansen’s (1988) ML estimator.

FORMAT

• {ev,evec,lr1,lr2} = sj(x,p,k);

INPUTS

• x data matrix (nobs × m)

• p order of the time polynomial in the fitted regression

• k number of lagged difference terms to use when computing the
estimator

OUTPUTS

• ev (m× 1) vector containing the eigen values

• evec (m×m) matrix containing the eigen vectors. First r columns are
the unnormalized cointegrating vectors

• 1r1 (m × 1) vector of Johansen’s likelihood ratio trace statistics for
r = 0 to m–1 cointegrating vectors

• 1r2 Johansen’s max statistic for the null hypothesis of 0 to m–1 coin-
tegrating vectors

GLOBALS

• Set NoDet = 1 to suppress the constant term from the fitted regression
and include it in the cointegrating regression.

REMARKS

1. Set p = 0 for a constant term.

2. Set p = 1 for a constant term and trend.

3. Refer to Johansen and Juselius (1990) for tabulations of the critical values.

4. SJ( ) uses the GAUSS routine EIGRG2(x), which sets the global vari-
able eigerr. Refer to the GAUSS manual for more details.

EXAMPLE

/* Cointegrating Regression: y = a+Xb+ e */
{a,b,lr1,lr2} = sj(y∼x,0,10); ‘‘Johansen trace statistics for

r=0 to r=cols(y∼x)-1’’ lr1;

‘‘Estimate of the (unnormalized) cointegrating vector:’’ b[.,1];

REFERENCES
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Johansen, S. J. (1988) “Statistical Analysis of Cointegration Vectors,” Journal
of Economic Dynamics and Control, 12: 231–254.

Johansen, S. J. (1991) “Estimation and Hypothesis Testing of Cointegration
Vectors in Gaussian Vector Autoregressive Models,” Econometrica,
59: 1551–1580.

Johansen, S. J. & K. Juselius (1990) “Maximum Likelihood Estimation and In-
ference on Cointegration — with Applications to the Demand for
Money,” Oxford Bulletin of Economics and Statistics, 52: 169–210.
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PS(y, x, p, ld, lg)
PURPOSE

• Computes Saikkonen’s (1991) estimator for cointegrated regressions.

FORMAT

• {beta,vc,stderr,sigma,tstats,rss,resid} = ps(y,x,d,ld,lg);

INPUTS

• y dependent variable

• x explanatory variables (I(1) only) (nobs × m)

• d deterministic part of the cointegrating regression

• lg number of lagged differences of x

• ld number of lead differences of x

OUTPUTS

• beta vector containing the parameter estimates, organized as follows:

– Let m = cols(x); p = cols(d);

– beta[1:p,1] — p coefficients of the deterministic part;

– beta[1+p:m+p,1] — m coefficients of x;

– Remaining terms are the coefficient estimates for the lag/lead differ-
ences of x.

• vc variance–covariance matrix for the parameter estimates

• stderr standard errors of the parameter estimates

• sigma standard error of the residuals

• tstats t-statistics for the parameter estimates

• rss residual sum of squares

• resid estimated residuals (nobs × 1)

GLOBALS

• NoDet

• Set NoDet = 1 to suppress the deterministic part from the
cointegrating regression.
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REMARK

1. lg and ld can be set to zero. Doing so will suppress the lead/lag variables.

REFERENCES

Phillips, P.C.B. & M. Loretan (1991) “Estimating Long Run Economic Equi-
librium,” Review of Economic Studies, 58: 407–436.

Saikkonen, P. (1991) “Asymptotically Efficient Estimation of Cointegrating Re-
gressions,” Econometric Theory, 7: 1–21.

Stock, J. H. & Watson, M. W. (1991) “A Simple MLE of Cointegrating Vec-
tors in Higher Order Integrated Systems,” mimeo, Department of
Economics, Northwestern University.
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HSTATC(y, x, p, q, l)
PURPOSE

• Computes Park’s (1992) H(p, q) statistic for the null-hypothesis that y
and x are cointegrated, using CCR( ).

FORMAT

• {hs,pv} = hstatc(y,x,p,q,l);

INPUTS

• y dependent variable (nobs × 1)

• x explanatory variables (nobs × k)

• p,q orders of the time polynomial in the fitted regression

• l number of autocovariance terms to compute the spectrum at frequency
zero

OUTPUTS

• hs h(p, q) statistic, which possesses a chi-squared distribution (asymp-
totically) with q − p degrees of freedom

• pv p-value of the H(p, q) statistic

DECISION RULE

• ker fun; filter; aband

• Set ker fun to one of the available kernels (see KERNELS.SRC) before
using HSTATC.

EXAMPLE

/* Compute H(0, 5) statistic using the Parzen kernel */
ker fun = &parzen ; filter = 1; aband = 0;

{hst,pvalue} = hstatc(y,x,0,5,20);

‘‘H(0,5) statistic; p-value =’’ hst∼pvalue;

REFERENCE

Park, J. Y. (1992) “Canonical Cointegrating Regressions,” Econometrica, 60:
119–144.
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HSTATF(y, x, p, q, l)
PURPOSE

• Computes Park’s (1988) H(p, q) statistic for the null-hypothesis that y
and x are cointegrated, using FM( ).

FORMAT

• {hs,pv} = hstatf(y,x,p,q,l);

INPUTS

• y dependent variable (nobs × 1)

• x explanatory variables (nobs × k)

• p,q orders of the time polynomial in the fitted regression

• l number of autocovariance terms to compute the spectrum at frequency
zero

OUTPUTS

• hs h(p, q) statistic, which possesses a chi-squared distribution (asymp-
totically) with q − p degrees of freedom

• pv p-value of the H(p, q) statistic

GLOBALS

• ker fun; filter; aband

• Set ker fun to one of the available kernels (see KERNELS.SRC) be-
fore using HSTATF.

EXAMPLE

/* Compute H(0, 5) statistic using the Parzen kernel */
ker fun = &parzen; aband = 0; filter = 1;

{hst,pvalue} = hstatf(y,x,0,5,20);

‘‘H(0,5) statistic; p-value (Parzen kernel) =’’ hst∼pvalue;

REFERENCES

Park, J. Y. (1992) “Canonical Cointegrating Regressions,” Econometrica, 60:
119–144.

Phillips, P. C. B. & B. E. Hansen (1990) “Statistical Inference in Instrumental
Variables Regression with I(1) Processes,” Review of Economic Stud-
ies, 57: 99–125.
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HSTAT(y, x, p, q, l)
PURPOSE

• Driver routine for HSTATC and HSTATF.

FORMAT

• {hs,pv} = hstat(y,x,p,q,l);

INPUTS

• y dependent variable (nobs × 1)

• x explanatory variables (nobs × k)

• p,q orders of the time polynomial in the fitted regression

• l number of autocovariance terms to compute the spectrum at frequency
zero

OUTPUTS

• hs h(p, q) statistic, which possesses a chi-squared distribution (asymp-
totically) with

– q − p degrees of freedom

• pv p-value of the H(p, q) statistic

GLOBALS

• ker fun; hstat; filter; aband

• Set ker fun to one of the available kernels (see KERNELS.SRC) be-
fore using HSTAT.

• Set hstat c to either &HSTATF or &HSTATC before calling this routine.

EXAMPLE

/* Compute H(0, 5) statistic using the Parzen kernel and HSTATF */
ker fun = &parzen;

hstat = &hstatf; aband = 1; filter = 0;

{hs,pv} = hstat(y,x,0,5,20);

‘‘FM H(0,5) statistic; p-value =’’ hs∼pv;
/* Now use HSTATC */
ker fun = &parzen;

hstat = &hstatc;

{hs,pv} = hstat(y,x,0,5,20);

‘‘FM H(0,5) statistic; p-value =’’ hs∼pv;
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CREGR(y, x, d, l)
PURPOSE

• Driver routine for CCR( ) and FM( )

FORMAT

• {beta,vc,stderr,sigma,tstats,rss,resid,stests}=cregr(y,x,d,l);

INPUTS

• y dependent variable (nobs × 1)

• x explanatory variables (nobs × k)

• d deterministic part in the fitted regression

• l number of autocovariance terms to compute the spectrum at frequency
zero

OUTPUTS

• beta (cols(x)+cols(d)) vector containing the parameter estimates

– beta[1:cols(x),1] contains the coefficients of x.}

• vc variance–covariance matrix for the parameter estimates

• stderr standard errors of the parameter estimates

• sigma standard error of the residuals

• tstats t-statistics for the parameter estimates

• rss residual sum of squares

• resid estimated residuals (nobs × 1)

• stests (3×1) vector containing B. Hansen’s structural stability tests;
namely, Lc,

– MeanF, and SupF (only available when cregr = &FM)

GLOBALS

• ker fun ; cregr; filter; sbstart, sbend; aband

• Set ker fun to one of the available kernels (see KERNELS.SRC) be-
fore using CREGR.

• Set cregr to &CCR or &FM before calling this routine.

• See KERNELS.SRC for a detailed explanation of the global constants.
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EXAMPLE

/* Cointegrating Regression: y = a+Xb+ e */
ker fun = &parzen; cregr = &fm; aband = 0; filter = 1;

dd = ones(rows(y),1);{a,b,c,d,e,f,g,stests} = cregr(y,x,dd,20);

‘‘FM X beta estimates, t-statistics:’’ a[1:cols(x),1]

∼e[1:cols(x),1];
‘‘FM estimate for constant term:’’ a[cols(x)+1:cols(x)+1,1]

∼e[cols(x)+1:cols(x)+1,1];
/* Recompute using Tukey–Hamming kernel and CCR */
ker fun = &tukham;

cregr = &ccr;

{a,b,c,d,e,f,g,stests} = cregr(y,x,dd,20);

‘‘CCR X beta estimates, t-statistics:’’ a[1:cols(x),1]

∼e[1:cols(x),1];
‘‘CCR estimate for constant term:’’ a[cols(x)+1:cols(x)+1,1]

∼e[cols(x)+1:cols(x)+1,1];
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ARMA.SRC

ARMA(p,q) Recursive Least Squares
Estimation

and Model Selection Procedures
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Introduction:

COINT 2.1 versus COINT 2.0

COINT 2.0 used throughout an OLS (degrees of freedom adjusted) error
variance estimator to calculate the AIC, BIC and PIC model selection criteria.
These calculations involve two separate parts: (1) the estimator for the variance
used to calculate the AIC, BIC, and PIC statistics, and (2) the estimated vari-
ance used to calculate the posterior odds ratio. For many applications an MLE
variance estimator, which is not adjusted for the degrees of freedom, may be pre-
ferred. This option is now available. New to COINT 2.1, the global ” variance”
switch allows you use an MLE estimator to calculate these statistics.

COINT 2.1 recognizes three settings for the variance switch:

1. variance = 0, in which case the OLS estimator is used to calculate
the AIC, BIC, and PIC criteria. The associated variance-covariance ma-
trix of the parameter estimates, which is used to calculated the posterior
odds ratio, is also estimated using the OLS estimator in this case. Using
variance = 0 replicates COINT 2.0, and remains the default.

2. variance = 1, in which case the MLE estimator is used to calculate
the AIC, BIC, and PIC criteria. The variance-covariance matrix of the
parameter estimates (and hence the posterior odds ratio) is calculated
using the OLS estimator.

3. variance = 2. In this case, the MLE estimator is used to calculate all
model selection criteria and the variance-covariance matrix of the param-
eter estimates.

The routines affected by the variance switch are: pparord(), ppadfbic(),
ppadfbit(), armamay(), armamayy(), pparord(), including any routines
that depend on these routines to calculate the various model selection criteria.
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ARORD(x, pmax, tmax)
PURPOSE

• Computes the Akaike (1969) AIC, Schwarz (1978) BIC, and Phillips–Ploberger
(1994) PIC criterion or order selection in an autoregression with determin-
istic trend.

FORMAT

• {aic,bic,pic} = arord(x,pmax,tmax);

INPUTS

• x dependent variable (nobs × 1)

• pmax maximum AR lag (pmax ≥ 0)

• tmax maximum degree of deterministic trend (tmax ≥ -1)

OUTPUTS

• aic (pmax+1 × tmax+2) array of AIC values

• bic (pmax+1 × tmax+2) array of BIC values

• pic (pmax+1 × tmax+2) array of PIC values

EXAMPLE

/* Calculate AIC, BIC and PIC criteria for an AR(p) + TR(t) model */
{aic,bic,pic} = arord(x,pmax,tmax);

“aic values’’ = aic;

“bic values =” bic;

“pic values =” pic;

RELATED PROCEDURES

• ARBIC, ARPIC, PPARORD

REMARKS

1. Set pmax > 0 or tmax < -1.

2. Use variance = 1 to use a maximum likelihood estimator for the vari-
ance used to calculate the model selection criteria. See page 63 for more
information.

REFERENCES

Akaike H. (1969) “Fitting Autoregressive Models for Prediction,” Annals of the
Institute of Statistical Mathematics, 21: 243–247.

Phillips, P. C. B. & W. Ploberger (1994) “Posterior Odds Testing for a Unit
Root with Data Based Model Selection,” Econometric Theory, 10(3/4):
774–808.

Schwarz, G. (1978) “Estimating the Dimension of a Model,” Annals of Statis-
tics, 6: 461–464.
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ARBC(x, pmax, tmax)
PURPOSE

• Computes the Schwarz (1978) BIC criterion for an autoregression with
deterministic trend and reports the selected lag order and trend degree.
The BIC values are output in array form and graphed as a surface in
3-D. Estimated coefficients of the selected model are returned together
with standard errors, t-ratios and variance matrix. Additional graphs are
returned of the BIC values for the AR order conditional on the selected
trend degree and the trend degree conditional on the selected AR lag
order.

FORMAT

• {bic,p,t,b,st,trat,vmat} = arbc(x,pmax,tmax);

INPUTS

• x dependent variable (nobs × 1)

• pmax maximum AR lag (pmax ≥0)

• tmax maximum degree of deterministic trend (tmax ≥-1)

OUTPUTS

• bic (pmax+1 ×tmax+2) array of BIC values

• p selected AR order

• t selected degree of deterministic trend

• b (p+t+1)-vector of estimated coefficients of selected model

• st standard errors of the parameter estimates

• trat t-ratios of the parameter estimates

• vmat variance matrix of the parameter estimates

EXAMPLE

/* Model selection for an AR(l) + TR(t) by BIC */
{bic,p,t,b,st,trat,vmat} = arbc(x,pmax,tmax);

‘‘bic values =’’ bic; ‘‘selected lag =‘‘ p;

‘‘selected trend =’’ t;‘‘coefficients’’ = b’;

‘‘st. errors =’’ st’; ‘‘t-ratios =’’ trat’;

REMARK

1. Use variance = 1 to use a maximum likelihood estimator for the variance
when calculating the BIC criterion. See page 63 for more information.
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RELATED PROCEDURES

• ARBIC, ARSTAT, GRFBIC, GRFBICL, GRFBICT

REFERENCE

Schwarz, G. (1978) “Estimating the Dimension of a Model,” Annals of Statis-
tics, 6: 461–464.
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ARPC(x, pmax, tmax)
PURPOSE

• Computes the Phillips–Ploberger (1994) PIC criterion for an autoregres-
sion with deterministic trend and reports the selected lag order and trend
degree. The PIC values are output in array form and graphed as a surface
in 3-D. Estimated coefficients of the selected model are returned together
with standard errors, t-ratios and variance matrix. Additional graphs are
returned of: (i) PIC values for the AR order conditional on the selected
trend degree; (ii) the trend degree conditional on the selected AR lag or-
der; and (iii) the PIC value of odds in favor of a unit root against the PIC
values for different AR orders conditional on the selected trend degree.

FORMAT

• {bic,picu,p,t,b,st,trat,vmat} = arpc(x,pmax,tmax);

INPUTS

• x dependent variable (nobs × 1)

• pmax maximum AR lag (pmax ≥ 0)

• tmax maximum degree of deterministic trend (tmax ≥ -1)

OUTPUTS

• pic (pmax+1 × tmax+2) array of PIC values

• picu odds in favor of unit root

• p selected AR order

• t selected degree of deterministic trend

• b (p+t+1)-vector of estimated coefficients of selected model

• st standard errors of the parameter estimates

• trat t-ratios of the parameter estimates

• vmat variance matrix of the parameter estimates

EXAMPLE

/* Model selection for an AR(l) + TR(t) by PIC */
{pic,picu,p,t,b,st,trat,vmat} = arpc(x,pmax,tmax);

‘‘pic values =’’ pic; ‘‘odds in favor of a unit root =’’ picu;

‘‘selected lag =’’ p; ‘‘selected trend =’’ t;

‘‘coefficients =’’ b’;‘‘st. errors =’’st’;

‘‘t-ratios =’’ trat’;

RELATED PROCEDURES

• ARPIC, ARSTAT, GRFPIC, GRFPICL, GRFPICT
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REMARKS

1. The graphics routines are interactive and allow the user to alter the per-
spective of viewing the PIC surface.

2. PIC tests for a unit root in the series are incorporated in the graphs and
show the gain/loss in odds from including a unit root in the specification.

3. Use variance = 1 or variance = 2 to use a maximum likelihood estimator
for the variance when calculating the pic/picu. See page 63 for more
information.

REFERENCE

Phillips, P. C. B. & W. Ploberger (1994) “Posterior Odds Testing for a
Unit Root with Data Based Model Selection,” Econometric Theory, 10(3/4):
774–808.
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ADFTR(x, p, r)
PURPOSE

• Estimates coefficients (using OLS) of an AR(p) + TR(r) model formulated
in levels and differences as:

x(t) = b1 ∗ x(t− 1) + b2 ∗ del(x(t− 1)) + · · ·
+ bp ∗ del(x(t− p+ 1) + a0 + · · ·+ ar ∗ tr (4)

Standard errors and t-ratios and variance matrix are returned. When
r = −1 in equation (1) there is no intercept in the regression.

FORMAT

• {b,st,trat,vmat} = adftr(x,p,r);

INPUTS

• x dependent variable (nobs × 1)

• p AR lag (p ≥ 0)

• r degree of deterministic trend (r ≥ −1)

OUTPUTS

• b (p+r+1)-vector of estimated coefficients of selected model

• st standard errors of the parameter estimates

• trat t-ratios of the parameter estimates

• vmat variance matrix of the parameter estimates

EXAMPLE

/* Estimation of an AR(p) + TR(r) by OLS */
{b,st,trat,vmat} = adftr(x,p,r);

‘‘coefficients =’’ b’; ‘‘st. errors =‘‘ st’; ‘‘t-ratios =‘‘ trat’;

RELATED PROCEDURES

• PPADFBIC, PPADFBIT, ARSTAT
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ARMATR(x, p, q, pt, pmax)
PURPOSE

• Computes recursive least squares estimates of an ARMA(p, q) + TR(pt)
model and reports the estimated coefficients, standard errors and t-ratios.
The recursive least squares estimates are asymptotically equivalent to the
Gaussian maximum likelihood estimates and employ the three stages of
the Hannan–Rissanen recursion. The third stage is iterated until stability
is achieved.

FORMAT

• {d,st,trat,vmat} = armatr(x,p,q,pt,pmax);

INPUTS

• x dependent variable (nobs × 1)

• p specified AR lag (p ≥0)

• q specified MA lag (q ≥0)

• pt specified TR degree (pt ≥-1)

• pmax AR lag for long AR in first stage (pmax ≥ 0)

OUTPUTS

• d (p+q+pt+1)-vector of estimated coefficients

• st standard errors of the parameter estimates

• trat t-ratios of the parameter estimates

• vmat variance matrix of the parameter estimates

EXAMPLE

/* Estimation of an ARMA(p, q) + TR(pt) by recursive least squares */
{d,st,trat,vmat} = armatr(x,p,q,pt, pmax);

‘‘coefficients =’’ d’; ‘‘st. errors =’’ st’; ‘‘t-ratios =’’ trat’;

RELATED PROCEDURES

• ARMATRA, ARMATR2, ARMAMAYY, ARMAMAY, ARMA-
STAT, ARMASTA3, ARMAORD
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REMARKS

1. The AR lag length pmax in the first stage of the recursion could be set
using the AIC criterion (see ARMATRA.PRG).

2. When the roots of the characteristic polynomial of the estimated coef-
ficients are unstable or close to unstable the third stage of the Han-
nan–Rissanen recursion is unstable. When the roots |λ| > 0.95 the third
stage of the recursion is not followed and the second stage estimates are
reported instead. A message is sent to the screen in this event.

REFERENCE

Hannan, E. J. & J. Rissanen (1982) “Recursive Estimation of Mixed Au-
toregressive Moving Average Order,” Biometrika, 69: 81-94.
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ARMATRA(x, p, q, pt, pmax)
PURPOSE

• Computes recursive least squares estimates of an ARMA(p, q) + TR(pt)
model and reports the estimated coefficients, standard errors and t-ratios.
The recursive least squares estimates are asymptotically equivalent to the
Gaussian maximum likelihood estimates and employ the three stages of
the Hannan–Rissanen recursion. The third stage is iterated until stability
is achieved. The AIC criterion is used to set the AR lag length and TR
trend degree in the first stage of the recursion.

FORMAT

• {d,st,trat,vmat} = armatra(x,p,q,pt,pmax);

INPUTS

• x dependent variable (nobs × 1)

• p specified AR lag (p ≥ 0)

• q specified MA lag (q ≥ 0)

• pt specified TR degree (pt ≥ -1)

• pmax maximum AR lag in long AR in first stage (pmax > 0)

OUTPUTS

• d (p+q+pt+1)-vector of estimated coefficients

• st standard errors of the parameter estimates

• trat t-ratios of the parameter estimates

• vmat variance matrix of the parameter estimates

EXAMPLE

/* Estimation of an ARMA(p, q) + TR(pt) by recursive least squares */
{d,st,trat,vmat} = armatra(x,p,q,pt,pmax);

‘‘coefficients =‘‘ d’; ‘‘st. errors =’’ st’; ‘‘t-ratios =’’ trat’;

RELATED PROCEDURES

• ARMATR, ARMATR2, ARMAMAYY, ARMAMAY, ARMA-
STAT, ARMASTA3, ARMAORD

72



REMARKS

1. The AR lag length in the first stage of the recursion is determined by the
AIC criterion.

2. When the roots of the characteristic polynomial of the estimated coef-
ficients are unstable or close to unstable the third stage of the Han-
nan–Rissanen recursion is unstable. When the roots |λ| > 0.95 the third
stage of the recursion is not followed and the second stage estimates are
reported instead. A message is sent to the screen in this event.

REFERENCE

Hannan, E. J. & J. Rissanen (1982) “Recursive Estimation of Mixed Au-
toregressive Moving Average Order,” Biometrika, 69: 81–94.
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ARMATR2(x, p, q, pt, pmax)
PURPOSE

• Computes two stage recursive least squares estimates of an ARMA(p, q)
+ TR(pt) model and reports the estimated coefficients, standard errors
and t-ratios. The two stage recursive estimates are consistent but not
asymptotically equivalent to the Gaussian maximum likelihood estimates.

FORMAT

• {d,t,st,trat,vmat} = armatr2(x,p,q,pt,pmax);

INPUTS

• x dependent variable (nobs × 1)

• p specified AR lag (p ≥ 0)

• q specified MA lag (q ≥ 0)

• pt specified TR degree (pt ≥ -1)

• pmax maximum AR lag in long AR in first stage (pmax ≥ 0)

OUTPUTS

• d (p+q+pt+1)-vector of estimated coefficients

• st standard errors of the parameter estimates

• trat t-ratios of the parameter estimates

• vmat variance matrix of the parameter estimates

EXAMPLE

/* ARMA(p, q) + TR(pt) using two stage recursive least squares */
{d,st,trat,vmat} = armatr2(x,p,q,pt,pmax);

‘‘coefficients =’’ d’; ‘‘st. errors =’’ st’; ‘‘t-ratios =’’ trat’;

RELATED PROCEDURES

• ARMATR, ARMAMAYY, ARMAMAY, ARMASTAT, ARMASTA3,
ARMAORD

REMARK

1. The AR lag length pmax in the first stage of the recursion is set using the
AIC criterion.

REFERENCE

Hannan, E. J. & J. Rissanen (1982) “Recursive Estimation of Mixed Au-
toregressive Moving Average Order,” Biometrika, 69: 81–94.
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ARMABIC3(x, pmax, tmax)
PURPOSE

• Performs model selection in the ARMA(p, q) + TR(pt) class using the BIC
criterion in conjunction with recursive least squares estimation by means
of the Hannan–Rissanen (1982) recursion with the Kavalieris (1991) mod-
ification for the residual variance estimate. BIC(p, q) values are returned
as well as the selected AR, MA and TR orders, and estimated coefficients,
standard errors, t-ratios and covariance matrix. The third stage of the
Hannan–Rissanen recursion is iterated until stability is achieved. If the
third stage of the recursion is unstable then the second stage estimates
are reported.

FORMAT

• {bic,p,q,t,d,st,trat,vmat,sig2} = armabic3(x,pmax,qmax,tmax);

INPUTS

• x dependent variable (nobs × 1)

• pmax AR lag for long AR in first stage (pmax ≥ 0)

• qmax maximum MA lag (qmax ≥ 0)

• tmax maximum TR degree (tmax ≥ -1)

OUTPUTS

• bic (pmax+1) × (qmax+1) matrix of bic values

• p selected AR order

• q selected MA order

• t selected TR degree (t ≥ −1)

• d (p+q+pt+1)-vector of estimated coefficients

• st standard errors of the parameter estimates

• trat t-ratios of the parameter estimates

• vmat variance matrix of the parameter estimates

• sig2 estimated equation error variance
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EXAMPLE

/* Model search in ARMA(p, q) + TR(pt) class by recursive least squares
estimation */
{bic,p,q,t,d,st,trat,vmat,sig2} = armabic3(x,pmax,qmax,tmax);

‘‘bic values =’’ bic; ‘‘selected AR lag =’’ p;

‘‘selected MA lag =’’ q;

‘‘coefficients =‘‘ d’; ‘‘st. errors =’’ st’; ‘‘t-ratios =’’ trat’;

REMARK

1. Use variance = 1 or variance = 2 to use a maximum likelihood estimator
for the variance when calculating the pic/picu. See page 63 for more
information.

RELATED PROCEDURES

• ARMABIC2, ARMATR2, ARMAMAYY, ARMAMAY, ARMA-
STAT, ARMASTA3, ARMAORD
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REMARKS

1. The AR lag length pmax in the first stage of the recursion could be set
using the AIC criterion (use ARORD.PRG).

2. When the roots of the characteristic polynomial of the estimated coef-
ficients are unstable or close to unstable the third stage of the Han-
nan–Rissanen recursion is unstable. When the roots |λ| > 0.95 the third
stage of the recursion is not followed and the second stage estimates are
reported instead. A message is sent to the screen in this event.

REFERENCES

Hannan, E. J. & J. Rissanen (1982) “Recursive Estimation of Mixed Autore-
gressive Moving Average Order,” Biometrika, 69: 81–94.

Kavalieris, L. (1991) “A Note on Estimating Autoregressive-Moving Average
Order,” Biometrika, 78: 920–922.
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ARMABIC2(x, pmax, qmax, tmax)
PURPOSE

• Performs model selection in the ARMA(p, q) + TR(pt) class using the BIC
criterion in conjunction with recursive least squares estimation by means
of the Hannan–Rissanen (1982) recursion with the Kavalieris (1991) mod-
ification for the residual variance estimate. BIC(p, q) values are returned
as well as the selected AR, MA and TR orders, and estimated coefficients,
standard errors, t-ratios and covariance matrix.

FORMAT

• {bic,p,q,t,d,st,trat,vmat,sig2} = armabic2(x,pmax,qmax,tmax);

INPUTS

• x dependent variable(nobs × 1)

• pmax AR lag for long AR in first stage (pmax ≥ 0)

• qmax maximum MA lag (qmax ≥ 0)

• tmax maximum TR degree (qmax ≥ -1)

OUTPUTS

• bic (pmax+1)×(qmax+1) matrix of bic values

• p selected AR order

• q selected MA order

• t selected TR degree (t ≥ −1)

• d (p+q+pt+1)-vector of estimated coefficients

• st standard errors of the parameter estimates

• trat t-ratios of the parameter estimates

• vmat variance matrix of the parameter estimates

• sig2 estimated equation error variance

EXAMPLE

/* Model search in ARMA(p, q) + TR(pt) class by recursive least squares
estimation */
{bic,p,q,t,d,st,trat,vmat,sig2} = armabic2(x,pmax,qmax,tmax);

‘‘bic values =’’ bic; ‘‘selected AR lag =’’ p;

‘‘selected MA lag =’’ q;

‘‘coefficients =’’ d’; ‘‘st. errors =’’ st’; ‘‘t-ratios =’’ trat’;
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RELATED PROCEDURES

• ARMABIC3, ARMATR2, ARMAMAYY, ARMAMAY, ARMA-
STAT, ARMASTA3, ARMAORD

REMARK

1. The AR lag length pmax in the first stage of the recursion could be set
using the AIC criterion (use ARORD.PRG).

2. Use variance = 1 or variance = 2 to use a maximum likelihood estimator
for the variance when calculating the pic/picu. See page 63 for more
information.

REFERENCES

Hannan, E. J. & J. Rissanen (1982) ”Recursive Estimation of Mixed Autore-
gressive Moving Average Order,” Biometrika, 69: 81–94.

Kavalieris, L. (1991) “A Note on Estimating Autoregressive-Moving Average
Order,” Biometrika, 78: 920–922.
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ARMABC(x, p, q, pt)
PURPOSE

• Performs model selection in the ARMA(p, q) + TR(pt) class using the BIC
criterion in conjunction with recursive least squares estimation by means
of the Hannan–Rissanen (1982) recursion with the Kavalieris (1991) mod-
ification for the residual variance estimate. BIC(p, q) values are returned
as well as the selected AR, MA and TR orders, and estimated coefficients,
standard errors, t-ratios and covariance matrix. The third stage of the
Hannan–Rissanen recursion is iterated until stability is achieved. If the
third stage of the recursion is unstable then the second stage estimates
are reported. Also graphs BIC surface for an ARMA(p, q) model with
maximum lag orders pmax > 0 and qmax > 0. Additional model selection
graphics are returned of the BIC values for the AR order conditional on
the selected MA lag and the MA lag conditional on the selected AR lag
order.

FORMAT

• {bic,p,q,t,d,st,trat,vmat} = armabc(x,pmax,qmax,tmax);

INPUTS

• x dependent variable(nobs × 1)

• pmax AR lag for long AR in first stage (pmax ≥ 0)

• qmax maximum MA lag (qmax ≥ 0)

• tmax maximum TR degree (tmax ≥ -1)

OUTPUTS

• bic (pmax+1) × (qmax+1) matrix of bic values

• p selected AR order

• q selected MA order

• t selected TR degree (t ≥ −1)

• d (p+q+pt+1)-vector of estimated coefficients

• st standard errors of the parameter estimates

• trat t-ratios of the parameter estimates

• vmat variance matrix of the parameter estimates

80



EXAMPLE

/* Model search in ARMA(p, q) + TR(pt) class by recursive least squares
estimation*/
{bic,p,q,t,d,st,trat,vmat} = armabc(x,pmax,qmax,tmax);

‘‘bic values =’’ bic; ‘‘selected AR lag =’’ p;

‘‘selected MA lag =’’q; ‘‘selected TR degree =’’ t;

‘‘coefficients =’’ d’; ‘‘st. errors =’’ st’; ‘‘t-ratios =’’ trat’;

RELATED PROCEDURES

• ARMABIC2, ARMABIC3, ARMATR2, ARMAMAYY, ARMA-
MAY, ARMASTAT, ARMASTA3, ARMAORD
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REMARKS

1. The AR lag length pmax in the first stage of the recursion could be set
using the AIC criterion (use ARORD.PRG).

2. When the roots of the characteristic polynomial of the estimated coef-
ficients are unstable or close to unstable the third stage of the Han-
nan–Rissanen recursion is unstable. When the roots |λ| > 0.95 the third
stage of the recursion is not followed and the second stage estimates are
reported instead. A message is sent to the screen in this event.

3. Use variance = 1 or variance = 2 to use a maximum likelihood estimator
for the variance when calculating the pic/picu. See page 63 for more
information.

REFERENCES

Hannan, E. J. & J. Rissanen (1982) “Recursive Estimation of Mixed Autore-
gressive Moving Average Order,” Biometrika, 69: 81–94.

Kavalieris, L. (1991) “A Note on Estimating Autoregressive-Moving Average
Order,” Biometrika, 78: 920–922.
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GRFBICPQ(pmax, qmax, bic)
PURPOSE

• Graphs BIC surface for an ARMA(p, q) model with maximum lag orders
pmax > 0 and qmax > 0. Requires input matrix of BIC values for ARMA
models which can be obtained from the procedure ARMABIC3.PRG.

FORMAT

• grfbicpq(pmax,qmax,bic);

INPUTS

• pmax maximum AR lag (pmax ≥ 0)

• qmax maximum MA lag (qmax ≥ 0)

OUTPUTS

• graphical surface of BIC values

EXAMPLE

/* Search in ARMA(p, q) + TR(pt) class and graphical display of BIC(p, q)
values */
{bic,p,q,b,st,trat,vmat} = armabic3(x,pmax,qmax,tmax);

grfbicpq(pmax,qmax,bic);

REMARK

1. Use variance = 1 or variance = 2 to use a maximum likelihood estimator
for the variance when calculating the pic/picu. See page 63 for more
information.

RELATED PROCEDURES

• ARBC, ARPC, GRFBICP, GRFBICQ, GRFBICL, GRFBICT
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LRVAR.SRC

Long-Run Variance and Spectral
Density

Estimation Procedures and Graphics
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SPECARMA(a, b, sig2, x)
PURPOSE

• Computes the spectral density of an ARMA(p, q) process with AR coeffi-
cients carried in the vector a and MA coefficients carried in the vector b.
The spectrum is computed at the points specified in the input vector x.

FORMAT

• spectrum = specarma(a,b,sig2,x);

INPUTS

• a(1xp) vector of autoregressive coefficients in a[1] + a[2]L+ · · ·+ a[p]Lp

• b(1xq) vector of moving-average coefficients in b[1] + b[2]L+ · · ·+ b[q]Lq

• sig2 error variance

• x (1× n) vector of frequencies to evaluate spectrum

OUTPUTS

• spectrum = (n× 1) vector of values of spectral density at x

EXAMPLE

/* Computation of spectrum of an ARMA(p, q) process */
spectrum = specarma(a,b,sig2,x);

‘‘spectral density at x =’’ spectrum;

RELATED PROCEDURES

• SARMAGRF, LRVARWX, LRVARO, DSPECTRA
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SARMAGRF(a, b, sig2, x)
PURPOSE

• Computes the spectral density of an ARMA(p, q) process with AR coef-
ficients carried in the vector a and MA coefficients carried in the vector
b. The spectrum is computed at the points specified in the input vector x
and then graphed.

FORMAT

• spectrum = sarmagrf(a,b,sig2,x);

INPUTS

• a(1xp) vector of autoregressive coefficients in a[1] + a[2]L+ · · ·+ a[p]Lp

• b(1xq) vector of moving-average coefficients in b[1] + b[2]L+ · · ·+ b[q]Lq

• sig2 error variance

• x (1× n) vector of frequencies to evaluate spectrum

OUTPUTS

• spectrum = (n × 1) vector of values of spectral density at x graph of
spectral density

EXAMPLE

/* Computation of spectrum of an ARMA(p, q) process */
spectrum = sarmagrf(a,b,sig2,x);

‘‘spectral density at x =’’ spectrum;

RELATED PROCEDURES

• SPECARMA, LRVARWX, LRVARO, DSPECTRA
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SPECWX(x, pmax, qmax, kernel, wx)
PURPOSE

• Computes the spectral density of a time series by several different methods.

• Uses recursive ARMA model selection methods (Hannan–Rissanen, 1982)
to find the most suited parametric model in the ARMA class and uses
the 3-stage Hannan–Rissanen recursion to estimate the coefficients of this
model. A parametric spectral density estimate is then constructed from
these coefficient estimates. Both 2-stage and 3-stage estimates from this
procedure are returned.

• Uses a nonparametric kernel estimate constructed with a data-based band-
width.

• Uses the Lee–Phillips (1993) procedure to find the best model for prefilter-
ing the data — as in (1) above — and then employs a kernel procedure
with a data-based bandwidth to nonparametrically estimate the spectral
density of the residuals. The nonparametric kernel estimate is then recol-
ored using the inverse of the model chosen to prefilter the data.

• Uses the Andrews–Monahan (1992) AR prefiltered and recolored spectrum
estimate.

FORMAT

• {g1,g2,g3,g4,g5} = specwx(x,pmax,qmax, kernel,wx);

INPUTS

• x (T × 1) vector of times series data

• pmax maximum AR lag used in model selection

• qmax maximum MA lag used in model selection

• kernel 1 for quadratic spectral kernel estimate; 2 for Parzen kernel es-
timate

• wx (1× n) vector of frequencies to evaluate spectrum

OUTPUTS

Five (n× 1) vectors of spectral density estimates at x:

• g1 parametric ARMA(p̂, q̂) estimate obtained from 2-stage Hannan–Rissanen
recursion

• g2 parametric ARMA(p̂, q̂) estimate obtained from 3-stage Hannan–Rissanen
recursion
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• g3 nonparametric kernel estimate using a data-based bandwidth choice

• g4 Lee–Phillips (1993) model-selected ARMA prefiltered and recolored
kernel estimate

• g5 Andrews–Monahan (1992) AR prefiltered kernel estimate
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EXAMPLE

/* Estimation of spectrum of an ARMA(p, q) process */
n = 4;

kernel = 1;

wx = seqa(0,pi/n,n+1)’;

pmax = 5;

qmax = 1;

{g1,g2,g3,g4,g5} = specwx(x,pmax,qmax, kernel,wx);

‘‘ARMA 2-stage estimate =’’ g1’;

‘‘ARMA 3-stage estimate =’’ g2’;

‘‘QS kernel estimate =’’ g3’;

‘‘Lee-Phillips estimate =’’ g4’;

‘‘Andrews-Monahan estimate =’’ g5’;

RELATED PROCEDURES

• LRVARWX, LRVRO, DSPECTRA, ANDREWSM

REMARKS

1. This program returns spectrum over [0, π] with the (n × 1) vector wx =
frequencies evaluated.

2. The data-based bandwidth choice is based on obtaining the optimal esti-
mate of the spectral density at the origin. This choice is not optimal at
other frequencies and will therefore affect estimates g3, g4 and g5 in this
regard.

REFERENCES

Andrews, D. W. K. & C. Monahan (1991) “An Improved Heteroskedasticity and
Autocorrelation Consistent Covariance Matrix Estimator,” Econo-
metrica, 60: 953–966.

Lee, C. C. & P. C. B. Phillips (1993) “An ARMA-Prefiltered Estimator of the
Long Run Variance with an Application to Unit Root Tests,” Cowles
Foundation, Yale University, mimeographed.
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SPWXGRF(x, pmax, qmax, kernel, wx)
PURPOSE

• Graphs estimates of the spectral density of a time series obtained by the
different methods used in the procedure LRVRWX.PRC.

– Parametric estimate based on the ARMA model selected and the co-
efficient estimates obtained in a 2-stage Hannan–Rissanen recursion.

– Parametric estimate based on the ARMA model selected and the co-
efficient estimates obtained in a 3-stage Hannan–Rissanen recursion.

– A nonparametric kernel estimate constructed with a data-based band-
width.

– The Lee–Phillips (1993) procedure of finding the best ARMA model
for prefiltering the data, employing a nonparametric kernel estimate
of the spectrum of the residuals, and subsequently recoloring the
spectral estimate.

– The Andrews–Monahan (1992) AR prefiltered and recolored spec-
trum estimate.

FORMAT

• {g1,g2,g3,g4,g5} = spwxgrf(x,pmax,qmax, kernel,wx);

INPUTS

• x (T × 1) vector of times series data

• pmax maximum AR lag used in model selection

• qmax maximum MA lag used in model selection

• kernel 1 for quadratic spectral kernel estimate;2 for Parzen kernel esti-
mate

• wx (1× n) vector of frequencies to evaluate spectrum

OUTPUTS

Five (n× 1) vectors of spectral density estimates at x:

• g1 parametric ARMA(p̂, q̂) estimate obtained from 2-stage Hannan–Rissanen
recursion

• g2 parametric ARMA(p̂, q̂) estimate obtained from 3-stage Hannan–Rissanen
recursion

• g3 nonparametric kernel estimate using a data-based bandwidth choice
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• g4 Lee–Phillips (1993) model-selected ARMA prefiltered and

• g5 Andrews–Monahan(1992) AR prefiltered kernel estimate

and sequential graphs of these spectral estimates and a composite graph of all
the estimates together.

EXAMPLE

/* Estimation of spectrum of an ARMA(p, q) process */
n = 40;

kernel = 1;

wx = seqa(0,pi/n,n+1)’;

pmax = 5; qmax = 1;

{g1,g2,g3,g4,g5} = spwxgrf(x,pmax,qmax, kernel,wx);

‘‘ARMA 2-stage estimate =’’ g1’;

‘‘ARMA 3-stage estimate =’’ g2’;

‘‘QS kernel estimate =’’ g3’;

‘‘Lee-Phillips estimate =’’ g4’;

‘‘Andrews-Monahan estimate =’’ g5’;

RELATED PROCEDURES

• SPECWX, LRVRWX, LRVARWX, LRVRO, DSPECTRA, AN-
DREWSM

REMARKS

1. This program returns spectrum and supplies graphs over [0, π] with the
(n× 1) vector wx = frequencies evaluated.

2. The data-based bandwidth choice is based on obtaining the optimal esti-
mate of the spectral density at the origin. This choice is not optimal at
other frequencies and will therefore affect estimates g3, g4 and g5 in this
regard.

REFERENCES

Andrews, D. W. K. & C. Monahan (1991) “An Improved Heteroskedasticity and
Autocorrelation Consistent Covariance Matrix Estimator,” Econo-
metrica, 60: 953–966.

Lee, C. C. & P. C. B. Phillips (1993) “An ARMA-Prefiltered Estimator of the
Long Run Variance with an Application to Unit Root Tests,” Cowles
Foundation, Yale University, mimeographed.
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PPLEE(x, pmax, qmax, kernel)
PURPOSE

• Computes the long-run variance of a time series by the Lee–Phillips (1993)
method: uses recursive ARMA model selection methods (Hannan–Rissanen,
1982) to find the most suited parametric model in the ARMA class for pre-
filtering the data and then employs a kernel procedure with a data-based
bandwidth to nonparametrically estimate the spectrum of the residuals at
the origin. The nonparametric kernel estimate is then recolored using the
inverse of the model chosen to prefilter the data.

FORMAT

• lrvar = pplee(x,pmax,qmax, kernel);

INPUTS

• x (T × 1) vector of times series data

• pmax maximum AR lag used in model selection

• qmax maximum MA lag used in model selection

• kernel 1 for quadratic spectral kernel estimate

– 2 for Parzen kernel estimate

OUTPUTS

• lrvar Lee–Phillips model-selected ARMA prefiltered and recolored ker-
nel estimate

EXAMPLE

/* Estimation of the long-run variance of an ARMA(p, q) process */
kernel = 1; pmax = 5; qmax = 1;

lrvar = pplee(x,pmax,qmax, kernel)

‘‘Lee-Phillips estimate =’’ lrvar;

RELATED PROCEDURES

• SPECWX, LRVRWX, LRVARWX, LRVRO, DSPECTRA, AN-
DREWSM, AMLRVR

REFERENCE

Lee, C. C. & P. C. B. Phillips (1993) “An ARMA-Prefiltered Estimator of
the Long Run Variance with an Application to Unit Root Tests,” Cowles
Foundation, Yale University, mimeographed.
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AMLRVR(x, kernel)
PURPOSE

• Computes the long-run variance of a time series by the Andrews–Monahan
(1992) method of AR prefiltering and recoloring combined with a data-
based kernel procedure.

FORMAT

• lrvr = amlrvr(x, kernel);

INPUTS

• x (T × 1) vector of times series data

• kernel 1 for quadratic spectral kernel estimate 2 for Parzen kernel esti-
mate

OUTPUTS

• lrvar Andrews–Monahan AR prefiltered and recolored kernel estimate

EXAMPLE

/* Estimation of the long-run variance of an ARMA(p, q) process */
kernel = 1;

lrvr = amlrvr(x, kernel)

‘‘Andrews-Monahan estimate =’’ lrvr;

RELATED PROCEDURES

• SPECWX, LRVRWX, LRVARWX, LRVRO, DSPECTRA, PPLEE

REFERENCE

Andrews, D. W. K. & C. Monahan (1991) “An Improved Heteroskedas-
ticity and Autocorrelation Consistent Covariance Matrix Estimator,” Econo-
metrica, 60: 953–966.
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LRVRO(x, pmax, qmax, kernel)
PURPOSE

• Computes the long-run variance of a time series by several different meth-
ods:

– Uses recursive ARMA model selection methods (Hannan–Rissanen,
1982) to find the most suited parametric model in the ARMA class
and uses the 3-stage Hannan–Rissanen recursion to estimate the co-
efficients of this model. A parametric spectral density estimate is
then constructed from these coefficient estimates. Both 2-stage and
3-stage estimates from this procedure are returned.

– Uses a nonparametric kernel estimate constructed with a data-based
bandwidth.

– Uses the Lee–Phillips (1993) procedure to find the best model for
prefiltering the data — as in (1) above — and then employs a kernel
procedure with a data-based bandwidth to nonparametrically esti-
mate the spectral density of the residuals. The nonparametric kernel
estimate is then recolored using the inverse of the model chosen to
prefilter the data.

– Uses the Andrews–Monahan (1992) AR prefiltered and recolored
spectrum estimate.

FORMAT

• {g1,g2,g3,g4,g5} = lrvro(x,pmax,qmax, kernel);

INPUTS

• x (T × 1) vector of times series data

• pmax maximum MA lag used in model selection

• kernel 1 for quadratic spectral kernel estimate; 2 for Parzen kernel es-
timate

OUTPUTS

Five long-run variance estimates:

• g1 parametric ARMA(p̂, q̂) estimate obtained from 2-stage Hannan–Rissanen
recursion

• g2 parametric ARMA(p̂, q̂) estimate obtained from 3-stage Hannan–Rissanen
recursion

• g3 nonparametric kernel estimate using a data-based bandwidth choice
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• g4 Lee–Phillips (1993) model-selected ARMA prefiltered and recolored
kernel estimate

• g5 Andrews–Monahan (1992) AR prefiltered kernel estimate

EXAMPLE

/* Estimation of spectrum of an ARMA(p, q) process */
kernel = 1; pmax = 5; qmax = 1;

{g1,g2,g3,g4,g5} = lrvro(x,pmax,qmax, kernel);

‘‘ARMA 2-stage estimate =’’ g1; ‘‘ARMA 3-stage estimate =’’ g2;

‘‘QS kernel estimate =’’ g3; ‘‘Lee-Phillips estimate =’’ g4;

‘‘Andrews-Monahan estimate =’’ g5;

RELATED PROCEDURES

• LRVRWX, DSPECTRA, ANDREWSM, AMLRV, PPLEE

REFERENCES

Andrews, D. W. K. & C. Monahan (1991) “An Improved Heteroskedasticity and
Autocorrelation Consistent Covariance Matrix Estimator,” Econo-
metrica, 60: 953–966.

Lee, C. C. & P. C. B. Phillips (1993) “An ARMA-Prefiltered Estimator of the
Long Run Variance with an Application to Unit Root Tests,” Cowles
Foundation, Yale University, mimeographed.
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PPZAZT(x, pmax, qmax, pt, kernel, sel)
PURPOSE

• This procedure calculates the Phillips (1987) & Phillips–Perron (1988)
test statistics Z(a) and Z(t) using automatic data-based estimates of the
long-run variance. The lrvar estimates that can be employed are the
Lee–Phillips (1993) ARMA model selected prefiltered and recolored kernel
estimate and the Andrews–Monahan (1992) AR prefiltered and recolored
kernel estimate.

FORMAT

• {alpha,za,zt} = ppzazt(x,pmax,qmax,pt, kernel,sel);

INPUTS

• x (T × 1) vector of times series data

• pmax maximum AR lag used in model selection

• qmax maximum MA lag used in model selection

• pt trend degree in regression (pt ≥ −1)

• kernel 1 for quadratic spectral kernel estimate; 2 for Parzen kernel es-
timate

• sel 1 for Lee–Phillips lrvar estimate; 2 for Andrews–Monahan lrvar
estimate

OUTPUTS

• alpha estimated AR coefficient

• za Z(a) statistic

• zt Z(t) statistic

EXAMPLE

/* Z(a) and Z(t) unit root tests for an ARIMA(0,1,1) process */
kernel = 1; pmax = 5; qmax = 1; pt = -1; sel = 1;

{alpha,za,zt} = ppzazt(x,pmax,qmax,pt, kernel,sel);

‘‘AR coefficient =’’ alpha;

‘‘Z(a) statistic =’’ za;

‘‘Z(t) statistic =’’ zt;

RELATED PROCEDURES

• AMLRV, PPLEE

REMARK

1. The model selection principles associated with the estimation of the Lee–Phillips
estimate of the long-run variance are explained in Phillips–Ploberger (1994)
where a posterior odds test for a unit root is developed.
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REFERENCES

Andrews, D. W. K. & C. Monahan (1991) “An Improved Heteroskedasticity and
Autocorrelation Consistent Covariance Matrix Estimator,” Econo-
metrica, 60: 953–966.

Lee, C. C. & P. C. B. Phillips (1993) “An ARMA-Prefiltered Estimator of the
Long Run Variance with an Application to Unit Root Tests,” Cowles
Foundation, Yale University, mimeographed.

Phillips P. C. B. and W. Ploberger (1994) “Posterior Odds Testing for a Unit
Root with Data Based Model Selection,” Econometric Theory, 10(3/4):
744–808.
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BAYES.SRC

Procedures for Bayesian Posterior
Analysis

of an AR(k) + TR(pt) Model and

for the Bayesian Analysis of

Cointegrating Regression Residuals
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BARTR(x, nstd, npoints, klag, pt)
PURPOSE

• Computes posterior distributions for the long-run autoregressive parame-
ter (i.e., the sum of the coefficients ) in an AR(k) + TR(pt) model. The
procedure uses an invariant Jeffreys’ prior as well as a uniform prior on
the coefficients in the regression (see Phillips, 1991a, 1991b). Posterior
probabilities for the nonstationary region [1.0, ∞) and the near nonsta-
tionary region [0.975,∞) are calculated and printed out, together with the
least squares estimates and their standard errors. Graphics programs are
called to graph the posterior distributions and the figures are output with
user supplied titles and labels. The Laplace method of approximation (see
Phillips, 1983, 1991b) and Tierney & Kadane, 1986) is used to calculate
the marginal posterior distributions of the long-run autoregressive coef-
ficient. Numerical integration is performed to renormalize the Bayesian
posteriors.

FORMAT

• {pdf1,pdf2,points} = bartr(x,nstd,npoints,klag,pt);

INPUTS

• x time series data (nobs × 1)

• npoints number of points at which densities are evaluated (usually npoints

= 500 is sufficient )

• nstd number of asymptotic standard deviations on either side of the
least squares estimate: defines the support of the posterior distribution
(usually 3.5 ≤ nstd ≤ 5.0)

• klag number of lags in the autoregression (klag ≥ 1)

• pt degree of deterministic trend (pt ≥ −1 ; −1 is case of no inter-
cept)

OUTPUTS

• pdf1 posterior density for a uniform prior

• pdf2 posterior density for a Jeffreys’ prior

• points vector of points where the densities are evaluated

EXAMPLE

/* Computation of posterior densities for AR(k) + TR(pt) model */
{pdf1,pdf2,points} = bartr(x,nstd,npoints,klag,pt);

‘‘posterior density ordinates at ‘points’‘‘ = pdf1∼df2;
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RELATED PROCEDURES

• BARTR2, BEC0, BEC3, DGRAPH

REMARKS

1. Need to set klag≥ 1 and pt > −1.

2. If the GAUSS procedure “INTSIMP” fails try reducing the input param-
eter nstd. This will contract the support over which the posterior density
is being computed and facilitate the use of “INTSIMP.”

REFERENCES

Phillips, P. C. B. (1983) “Marginal Densities of Instrumental Variables Estima-
tors in the General Single Equation Case,” Advances in Economet-
rics, 2: 1–24.

Phillips, P. C. B. (1991a) “Bayesian Routes and Unit Roots: de Rebus Pri-
oribus Semper est Disputandum,” Journal of Applied Econometrics,
6(4): 435–474.

Phillips, P. C. B. (1991b) “To Criticize the Critics: an Objective Bayesian Anal-
ysis of Stochastic Trends,” Journal of Applied Econometrics, 6(4):
333–364.

Tierney, L. & J. B. Kadane (1986) “Accurate Approximations for Posterior Mo-
ments and Marginal Densities,” Journal of the American Statistical
Association, 81: 82–86.
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BARTR2(x, nstd, npoints, klag, pt)
PURPOSE

• Computes posterior distributions for the long-run autoregressive parame-
ter (i.e., the sum of the coefficients) in an AR(k) + TR(pt) model using
an invariant Jeffreys’ prior and a uniform prior on the coefficients in the
regression (see Phillips, 1991a, 1991b). The procedure returns results for
AR(1) + TR(pt) and AR(k) + TR(pt) models. The posterior densities
for these two models can then be graphed on the same figure — see the
procedure DGRAPH.

• Laplace approximations are used as in the procedure BARTR.

FORMAT

• {pdf1,pdf2,pdf3,points} = bartr(x,nstd,npoints,klag,pt);

INPUTS

• x time series data (nobs × 1)

• npoints number of points at which densities are evaluated (usually npoints

= 500 is sufficient)

• nstd number of asymptotic standard deviations on either side of the
least squares estimate: defines the support of the posterior distribution
(usually 3.5 ≤ nstd ≤ 5.0)

• klag number of lags in the autoregression (klag ≥ 1)

• pt degree of deterministic trend (pt ≥ −1 ; −1 is case of no inter-
cept)

OUTPUTS

• pdf1 posterior density: model = AR(1) + TR(pt) with a Jeffreys’
prior

• pdf2 posterior density model = AR(klag) + TR(pt) for a Jeffreys’
prior

• pdf3 posterior density model = AR(klag) + TR(pt) for a uniform
prior

• points vector of points where the densities are evaluated

EXAMPLE

/* Computation of posterior densities for AR(k) + TR(pt) model */
{pdf1,pdf2,pdf3,points} = bartr(x,nstd,npoints,klag,pt);

‘‘posterior density ordinates’’ = pdf1∼pdf2∼pdf3;
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RELATED PROCEDURES

• BARTR, BEC0, BEC3, DGRAPH

REMARKS

1. Need to set klag ≥ l and pt > -1.

2. If the GAUSS procedure “INTSIMP” fails try reducing the input param-
eter nstd. This will contract the support over which the posterior density
is being computed and facilitate the use of “INTSIMP.”

3. Some empirical illustrations with this procedure are reported in Phillips
(1991a,b, 1992).

REFERENCES

Phillips, P. C. B. (1991a) “Bayesian Routes and Unit Roots: de Rebus Pri-
oribus Semper est Disputandum,” Journal of Applied Econometrics,
6(4): 435–474.

Phillips, P. C. B. (1991b) “To Criticize the Critics: an Objective Bayesian Anal-
ysis of Stochastic Trends,” Journal of Applied Econometrics, 6(4):
333–364.

Phillips, P. C. B. (1992) “The Long-Run Australian Consumption Function Re-
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DGRAPH(zx, zy, name, dates, klag, nobs,
ngraph)

PURPOSE

• Graphics procedure for computing the posterior densities for the long-run
autoregressive parameter in an AR(k) + TR(pt) model. The procedure
has options to compute the posterior densities for the same model with
different priors (a Jeffreys’ prior and a uniform prior on the coefficients in
the regression) or for AR models with different lag lengths. This facilitates
comparisons of posteriors across priors and across models.

FORMAT

• dgraph(zx,zy,name,dates,klag,nobs,ngraph);

INPUTS

• zx vector of points where the densities are to be evaluated

• zy matrix of data of density ordinates (zx × cols(zy))

• name title for figure giving name of time series (string)

• dates dates of data (string)

• klag number of lags in the longest autoregression (klag ≥ 1)

• nobs number of observations in the time series

• ngraph select number of posterior densities on figure:

– = 0 for just AR(k) results

– = 1 for both AR(1) and AR(k) results

OUTPUTS

• Graphs with user supplied labels and legends that record the parameters
of the models being used

EXAMPLE

/* Graphing the posterior densities for an AR(k) + TR(pt) model with k = 1
and k > 1 */

name = ‘‘Test Data from an AR(2) + trend model’’; @ data @

dates = ‘‘1:n simulated’’;

seed = 43125;

nstd = 4.0;

npoints = 500; @ number of points to evaluate densities @

klag = 4; @ set AR lag parameter : use klag ge 1 @

pt = 2; @ set trend degree ge -1 @
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/* input parameters are now set */
/* now generate data */
a = 0.85; b = 0.45; c = 0.5; d = 0.025; n = 150;

x = rndns(n,1,seed); x = recserar(x,0,b); x = recserar(x,0,a)

+ d*seqa(1,1,n) + c*ones(n,1);

{pdf1, pdf2, pdf3, points} = bartr2(x, nstd, npoints,

klag, pt);

zy = pdf1∼pdf2∼pdf3; zx = points;

dgraph(zx,zy,name,dates,klag,n,1);

RELATED PROCEDURES

• BARTR, BARTR2, BEC0, BEC3

REMARK

1. Need to set klag ≥ 1 and pt > –1.
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DATGRAPH(x, scr, name)
PURPOSE

• Graphs time series data.

FORMAT

• datgraph(x,scr,name);

INPUTS

• x vector of time series data

• scr screen selector: scr

– = 1 sends graphs to screen

– = 0 otherwise

• name title for figure giving name of time series (string)

OUTPUTS

• Data graph with user supplied title

EXAMPLE

/* Graphing simulated data */
name = ‘‘Test Data: iid N(0,1)’’;

seed = 43125;

n = 150;

x = rndns(n,1,seed);

datgraph(x,1,name);

RELATED PROCEDURE

• GRAPH
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CBARE(x, nstd, npoints, klag, pt)
PURPOSE

• This program is designed to be used with the residuals from a cointe-
grating regression. It computes posterior distributions for the long-run
autoregressive parameter (i.e., the sum of the coefficients ) in an AR(k)
model for k = 1 and k > 1 using a Jeffreys’ prior (for k = 1), and e-priors
(see Phillips, 1992, and Zivot & Phillips, 1994) and uniform prior (for
k > 1) on the coefficients in the autoregression. The procedure returns re-
sults for both AR(1) and AR(k) models. The posterior densities for these
two models can then be graphed on the same figure — see the procedure
DGRAPHE.

• Laplace approximations are used to compute the marginal posterior densi-
ties. Numerical integration is used to renormalize the Bayesian posteriors.

FORMAT

• {pdf1,pdf2,pdf3,pts} = cbare(x,nstd,npoints,klag);

INPUTS

• x residuals from a cointegrating regression (nobs × 1)

• npoints pointsnumber of points at which densities are evaluated (usually
npoints = 500 is sufficient)

• nstd number of asymptotic standard deviations on either side of the
least squares estimate: defines the support of the posterior distribution
(usually 3.5 ≤ nstd ≤ 7.0)

• klag number of lags in the autoregression (klag ≥ 1)

OUTPUTS

• pfd1 posterior density: model = AR(1) with a Jeffreys’ prior

• pdf2 posterior density: model = AR(klag) with an e-prior as in Phillips
(1992) and Zivot & Phillips (1993)

• pdf3 posterior density: model = AR(klag) with a uniform prior

• pts vector of points where the densities are evaluated

EXAMPLE

/* Computation of posterior densities for cointegrating regression residuals
using AR(1) and AR(klag) models for the residuals /*
{pdf1,pdf2,pdf3,points} = cbare(sdat,nstd,npoints,klag);

‘‘posterior density ordinates’’ = pdf1∼pdf2∼pdf3;
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RELATED PROCEDURES

• BARTR, BMAT3, DGRAPHE

REMARKS

1. Need to set klag ≥ 1.

2. If the GAUSS procedure “INTSIMP” fails try reducing the input param-
eter nstd. This will contract the support over which the posterior density
is being computed and facilitate the use of “INTSIMP.”

3. The procedure uses a product (of diagonal elements) formulation for the
e-prior with an exponential weighting to ensure integrability and sets the
exponent in the e-prior by formula which determines the point (= 1 + e)
at which the e-prior attains its maximum: see Phillips (1992) and Zivot
and Phillips (1994) for details.

4. Some empirical illustrations with this procedure are reported in Phillips
(1992).

REFERENCES

Phillips, P. C. B. (1992) “The Long-Run Australian Consumption Function Re-
examined: An Empirical Exercise in Bayesian Inference,” Ch. 11 in
C. P. Hargreaves (ed.), Macroeconomic Modelling of the Long Run.
Aldershot: Edward Elgar, pp. 287–322.

Zivot, E. & P. C. B. Phillips (1994) “A Bayesian Analysis of Trend determina-
tion in Economic Time Series,” Econometric Reviews, 13: 291–336.
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DGRAPHE(zx, zy, eqnname, filegr, yname,
xname)

PURPOSE

• This is a graphics procedure for use in Bayesian cointegrating regression
analysis. The procedure graphs the posterior densities for the long-run
autoregressive parameter in AR(1) and AR(k) models fitted to the resid-
uals from a cointegrating regression. Labels and equation specifics are
input as arguments of the procedure. This procedure is generally used in
conjunction with the procedure CBARE.

FORMAT

• dgraphe(zx,zy,eqnname,filegr,yname,xname);

INPUTS

• zx vector of points where the densities are to be evaluated

• zy matrix of data of density ordinates (zx × cols(zy))

• eqnname title for figure giving the cointegrating regression (string)

• filegr graphics tkf file name

• yname y-axis label

• xname x-axis label

OUTPUTS

• Graphs with user supplied labels and legends that record the details of
the fitted models

GLOBALS

• eps = epsilon parameter for e-prior (see Phillips, 1992 and Zivot &
Phillips, 1994).

• Usually 0.01 ≤ eps ≤ 0.05.
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EXAMPLE

/* Graphing the posterior densities for an AR(k) + TR(t) model with k = 1
and k > 1 */

seed = 44125; npoints = 300;@ number of points to evaluate

densities@

klag = 2;@ set AR lag parameter: use klag ge 1@

eps = 0.03;@ set eps = epsilon in e-prior of Zivot &

Phillips(1994)@

eqnname = ‘‘y = a + b’x + u’’;

filegr = ‘‘myfile.tkf’’;@ set tkf file@

yname = ‘‘density’’;

xname = “\202\114\201 = l r AR coeff.";

nstd = 7.5; @ defines posterior support: +/-nstd*asym. st.dev.@

a = 1.0; b = 0.50; c = 2.0; n = 150; x = rndns(n,1,seed);

u = rndns(n,1,seed);

x = recserar(x,0,a); y = b*x + c*ones(n,1) + u; sdat = y∼x;
{a1,a2,a3,a4,a5} = quickols(sdat);@ ols residuals from

regression@

@ of first column on other cols of sdat@

sdat = a5; @ reset to residuals from cointegrating regression@

{pdf1,pdf2,pdf3,zb} = cbare(sdat,nstd,npoints,klag);

zy = pdf1∼pdf2∼pdf3; zx = zb; dgraphe(zx,zy,eqnname,filegr,

yname,xname);

RELATED PROCEDURES

• CBARE, BMAT3, QUICKOLS, DGRAPH

REMARKS

1. Need to set klag ≥ 1.

2. Need to define global eps.
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KERNELS.SRC

Procedures for Computing Kernels
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KERNELS(u, l)
PURPOSE

• Driver routine for the CAUCHY( ), FEJER( ), TUKHAM( ), BOHMAN( ),
REISZ( ), DIRIC( ), MDIRIC( ), PARZEN( ), GW( ), QS( ) kernels.

FORMAT

• amat = kernel(u,l);

INPUTS

• u stationary variable (n× k)

• l number of autocovariance terms in the kernel

OUTPUTS

• amat (k×k) matrix given by
(
1
n

)∑`
j=1 w`(j)

∑n
t=i+1 utu

′
t−j , where w`(j)

is a kernel weight

GLOBALS

• ker fun

• Set ker fun to one of the available kernels before calling this routine.

AVAILABLE KERNELS

1. FEJER( ) Fejer, Bartlett kernel
2. DIRIC( ) Dirichlet kernel
3. MDIRIC( ) Modified Dirichlet kernel
4. PARZEN( ) Parzen kernel
5. TUKHAM( ) Tukey–Hamming kernel
6. TUKHAN( ) Tukey–Hanning kernel
7. CAUCHY( ) Cauchy kernel
8. BOHMAN( ) Bohman kernel
9. REISZ( ) Riesz, Bochner kernel

10. GW( ) Gauss–Weierstrass kernel
11. QS( ) Andrews (1991) Quadratic–Spectral

EXAMPLE

ker fun = &parzen;

a = kernel(detrend(y,0),5);

‘‘Autocovariance matrix using Parzen window:’’ a;

‘‘Spectrum of y at frequency zero:’’ (y’y/rows(y)) + a + a’;
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COINT Global Constants

Please note that once these global variables are set to 1 they remain active for

the remainder of your GAUSS program.

filter

1. COINT supports the use of an AR(1) filter to compute the spectrum at
frequency zero. Consider a stationary series ut such that

ut = Aut−1 + zt

The spectrum of ut is fuu(0) =inv(I −A)fzz(0)inv(I −A′).

2. The aim of the AR(1) filter is to flatten the spectrum of u around the
zero frequency, thereby making it easier to estimate the true spectrum by
simple averaging of the periodogram.

3. To use the AR(1) feature of COINT, set filter = 1; i.e., in terms of
GAUSS code:

4. filter = 1;

5. Setting filter to any other value switches the AR(1) filter off.

6. DEFAULT VALUE: filter = 0.

aband

1. Andrews (1991) has developed data based (or automatic) bandwidth pro-
cedures for computing the spectrum. COINT implements these proce-
dures for the Parzen, Fejer, Tukey–Hamming, and the Quadratic–Spectral
kernels. When aband is active, COINT ignores the value you specify for
the band-width parameter and automatically substitutes the data-based
value.

2. Automatic bandwidth selection is activated by setting aband to unity
before you invoke a procedure; i.e., in terms of GAUSS code,

3. aband = 1;

4. You can switch off automatic bandwidth feature by setting aband to any
other value (zero is a good choice).

5. DEFAULT VALUE: aband = 0.
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sbstart, sbend

1. Hansen’s (1991) MeanF and SupF statistics for testing the stability of
the cointegrating vector rely on estimates of the F statistic for a range of
break-points in your sample. sbstart and sbend define the beginning
and end points of the sample. They must be expressed as a proportion of
the sample period.

2. If you choose to alter these parameters, please ensure that sbstart <
sbend.

3. DEFAULT VALUES: sbstart = 0.15; sbend = 0.85.

4. Thus, if you have 100 observations, the F -statistic for structural change
will be computed for observations 15 to 85 inclusive.

variance (COINT 2.1 and above)

COINT 2.0 uses an OLS (degrees of freedom adjusted estimator) to calculate the
AIC, BIC and PIC model selection criteria, including the posterio odds ratio.
These calculations involve two components: (1) the estimator for the variance
used to calculate the AIC, BIC, and PIC statistics, and (2) the estimated vari-
ance used to calculate the posterior odds ratio. For some applications, however,
an MLE variance estimator, which is not adjusted for degrees of freedom, may
be preferred.
New to COINT 2.1, the variance switch allows you use an MLE estimator to
calculate these statistics. COINT 2.1 recognizes three settings for variance:

1. variance = 0, in which case the OLS estimator is used to calculate
the AIC, BIC, and PIC criteria. The associated variance-covariance ma-
trix of the parameter estimates, which is used to calculated the posterior
odds ratio, is also estimated using the OLS estimator in this case. Using
variance = 0 replicates COINT 2.0, and remains the default.

2. variance = 1, in which case the MLE estimator is used to calculate
the AIC, BIC, and PIC criteria. The variance-covariance matrix of the
parameter estimates (and hence the posterior odds ratio) is calculated
using the OLS estimator.

3. variance = 2. In this case, the MLE estimator is used to calculate all
model selection criteria and the variance-covariance matrix of the param-
eter estimates.

The routines directly affected by variance parameter are: pparord(), ppadf-
bic(), ppadfbit(), armamay(), armamayy(), pparord().
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Useful Supporting Procedures

1. JCRIT(p, q): returns a (6×1)vector of critical values for the Park and
Choi (1988) J(p, q) statistic {1%, 5%, 10%, 90%, 96%, 99%}. NB:−1 ≤
p ≤ 5; q > p; 0 ≤ q ≤ 11.

2. ZACRIT(nobs,p): returns a (6×1) vector of critical values for Phillips’
(1987) Zα statistic {1%, 5%, 10%, 90%, 95%, 99%}. Set “nobs” to the
number of observations used in the unit root regression. Set p to the order
of the time polynomial in the fitted regression. NB: −1 ≤ p ≤ 5; critical
values change for nobs: 1 ≤ nobs ≤ 500; change points: nobs = 51, 100,
150, 200, 250, 300, 350, 400, 450, 500.

3. ZTCRIT(nobs,p): returns a (6×1)vector of critical values for Phillips’
(1987) Zt statistic {1%, 5%, 10%, 90%, 95%, 99%}. Set “nobs” to the
number of observations used in the unit root regression. Set p to the
order of the time polynomial in the fitted regression. NB: −1 ≤ p ≤ 5;
critical values change for nobs: 1 ≤ nobs ≤ 500; change points:nobs = 50,
100, 150, 200, 250, 300, 350, 400, 450, 500.

4. RZACRIT(nobs,n, p): returns a (6×1)vector of critical values for Phillips’
(1987) Zα statistic when applied to the residuals of a cointegrating regres-
sion. Set “nobs” to the number of observations used in the cointegrating
regression. Set p to the order of the time polynomial in the cointegrating
regression. Set n to the number of explanatory (integrated) variables in
the cointegrating regression (1 ≤ n ≤ 5). NB: −1 ≤ p ≤ 5; critical values
change for nobs: 1 ≤ nobs ≤ 500; change points: nobs = 100, 200, 300,
400, 500.

5. RZTCRIT(nobs,n, p): returns a (6×1)vector of critical values for Phillips’
(1987) Zt statistic when applied to the residuals of a cointegrating regres-
sion. Set “nobs” to the number of observations used in the cointegrating
regression. Set p to the order of the time polynomial in the cointegrating
regression. Set n to the number of explanatory (integrated) variables in
the cointegrating regression 1 ≤ n ≤ 5). NB: −1 ≤ P ≤ 5; critical values
change for nobs: 1 ≤ nobs ≤ 500; change points: nobs = 100, 200, 300,
400, 500.

6. C SW(n, p): returns a (6×1) vector of critical values for the Stock and
Watson (1988) test for cointegration. Set n to the dimension of the co-
integrating system; p to the order of the time polynomial in the data.

7. C PU(n, p): returns a (6×1) vector of critical values for the Pu statistic.
Set n to the dimension of the cointegrating system. Set p to the order of
the deterministic part.
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8. C PZ(n, p): returns a (6×1) vector of critical values for the Pz statistic.
Set n to the dimension of the cointegrating system. Set p to the order of
the deterministic part.

9. DETREND(y, p): regresses y against a polynomial time trend of order
p and returns the residuals. If p = −1, procedure returns y. Use p = 0 for
demeaning; p = 1 for regression against a constant term and trend; p > 1
for higher order polynomial time trend.

10. DIFF(y, p): if p > 0, returns yt − yt−n (dimension: (rows(y) − p) × 1).
NOTE: DIFF(x, 0) = x.

NOTE: for procedures returning critical values, if p is not in [−1, 5], the pro-
cedure returns a (6×1) zero vector (i.e., zeros(6,0)).
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COINT 1.0 versus COINT 2.0: New

Features

1. The Quadratic-Spectral kernel estimator has been added to the list of
kernels in COINT. Also, COINT now supports automatic bandwidth
selection for estimating the long-run variance (i.e., spectrum at frequency
zero). Automatic bandwidth is controlled by the global constant aband.
Set aband = 1 to enable automatic bandwidth selection. See page 113
for more information.

2. You can now estimate the long-run variance using an AR(1) filter. This
is controlled by the global constant filter. See page 113 for more infor-
mation.

3. Introduction of the global parameter NoDet. This parameter controls
whether the regression procedures include a deterministic part in the coin-
tegrating regression (typically denoted by “d”’ in the argument list of the
regression procedures). The NoDet parameter eliminates the need for
the “s” parameter as an argument to regression procedure. IMPLICA-
TION: you will need to adjust your code to use the regression procedures
in COINT 2.0. Simply remove the “s” parameter from your calls to the
regression procedures in COINT. If you set s = 1 to suppress the deter-
ministic part, set NoDet = 1 just before the procedure call. Remember
to set NoDet = 0 after the procedure call to ensure that subsequent pro-
cedures are not affected. See CREGRS.SRC for a description of the
regression procedures in COINT.

4. FM now computes B. E. Hansen’s structural break tests. This feature
resulted in a extra return argument to the calls for FM and CCR. IM-
PLICATION: if you used FM or CCR in your code, you will need to
add one extra return argument. The extra argument is a 3×1 column
vector containing Hansen’s structural break tests.

5. The SJ( ) procedure has one less argument. The “r” parameter for
the number of cointegrating vectors has been removed. It now computes
the Johansen statistic for all values of r (i.e., r = 0, 1, ..., cols(x)). The
procedure also allows you to put the deterministic part in the cointegrating
regression, rather than the fitted VAR. Set NoDet = 1 to do so. Lastly,
the procedure does not return any critical values. The procedure now
returns only 4 arguments. IMPLICATION: if you used SJ( ) in your
code, you will need to change the calls to run SJ( ).

New libraries of procedures have been added for: ARMA model selection and
estimation; long-run variance and spectral estimation by data driven ARMA
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pre-filtering and kernel estimation; Bayes posterior analysis of deterministic
trends and unit roots.

COINT 2.1 versus COINT 2.0: New

Features

1. COINT 2.1, which was released November 2016, introduces a new global
setting called “ variance” that can be used to control the type of variance
estimator used when calculating the AIC, BIC, and PIC model selection
criteria. The user can also control the variance estimator used to calculate
the posterior odds ratio. See page 63 for more details.
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